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Man is a machine so complicated that it is impossible at first to form a clear idea of it, and 
consequently to describe it. This is why all the investigations the greatest philosophers 
have made a priori, that is by wanting to take flight with the wings of the mind, have been 
in vain. Only a posteriori, by unraveling the soul as one pulls out the guts of the body, can 
one, I do not say discover with clarity what the nature of man is, but rather attain the 
highest degree of probability possible on the subject. 
 

La Mettrie, L’Homme machine, 1748 

 
 
 
 
 
 
 
 
 

This thesis is dedicated to the memory of David Hodgson AO QC, jurist, philosopher, 
and cognitive scientist 
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Abstract 
 
What conception of mental architecture can survive the evidence of neuroplasticity and 
neural reuse in the human brain? In particular, what sorts of modules are compatible with 
this evidence? I aim to show how developmental and adult neuroplasticity, as well as 
evidence of pervasive neural reuse, forces us to revise the standard conception of 
modularity and spells the end of a hardwired and dedicated language module. I argue 
from principles of both neural reuse and neural redundancy that language is facilitated by 
a composite of modules (or module-like entities), few if any of which are likely to be 
linguistically special, and that neuroplasticity provides evidence that (in key respects and 
to an appreciable extent) few if any of them ought to be considered developmentally 
robust, though their development does seem to be constrained by features intrinsic to 
particular regions of cortex (manifesting as domain-specific predispositions or acquisition 
biases). In the course of doing so I articulate a schematically and neurobiologically precise 
framework for understanding modules and their supramodular interactions. 
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1 
_____ 

 
Introduction 

 

 

 

 

 

 

A familiar trope of cognitive science, linguistics and the philosophy of psychology over 

the past forty or so years has been the idea of the mind as a modular system. In the 

context of contemporary psychology, a modular system is, typically, one consisting of 

functionally specialized subsystems responsible for processing different classes of input 

(e.g. for vision, hearing, human faces, etc.), or at any rate for handling specific cognitive 

tasks. The general motivation for this hypothesis is the belief that the mind is 

heterogeneous, in contrast to an earlier view of the mind which posited a uniform 

structure. Though no doubt a plausible, methodologically fruitful and highly influential 

idea in its own right—thanks in no small part to Jerry Fodor (1983), whose pioneering 

effort gave it contemporary theoretical expression and substance—modularity entered the 

scene in a big way at just about the time that saw the arrival of a new and potentially 

subversive force in the behavioural and brain sciences, the mature field of neuroscience, 

which despite earlier beginnings only really came of age in the late twentieth century. One 

of the outstanding achievements of neuroscience in the past thirty years has been the 

discovery of the brain’s lifelong powers of renewal and reorganization. Neuroplasticity 

has for better or worse challenged many of the orthodox conceptions of the mind which 

originally led cognitive scientists to postulate mental faculties. Similarly, rapidly 

accumulating neuroscientific evidence of the reuse or redeployment of neural circuits, 

revealing the integrated and interactive structure of brain regions, has upset basic 

assumptions about the relation of function to structure upon which modularity—not to 

say neuroscience itself—originally depended. These movements, developments and 

cross-currents form the subject of the present study. 
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Although there are many reasons one might find the modularity of mind an 

interesting hypothesis, from my point of view it is the suggestion that it might account for 

language processing that makes it endlessly intriguing. Noam Chomsky (1975, p. 4) once 

remarked that “[t]o come to know a human language would be an extraordinary 

intellectual achievement for a creature not specifically designed to accomplish this task.” 

Does specialization for language require that language be subserved by dedicated circuits 

in the brain? Many, including Fodor, continue passionately to believe so, their faith 

undimmed by the passage of years and the inexorable advance of neuroscience. The issue 

is tied up in what is possibly the most contentious and acrimonious dispute in all of 

modern linguistics: is language innately specified? 

 

Throughout this study I shall be concerned with the following question: could 

something having the rough outlines of Fodor’s module account for language processing, 

and if not, what sort of module might plausibly take its place, if any? It will be my 

contention that language is not subserved by a module in Fodor’s sense, at least not in a 

straightforward way, and this makes that notion misleading as far as language modules go. 

I shall argue from principles of both neural reuse and neural redundancy that language is 

facilitated by a composite of modules (or module-like entities), few if any of which are 

likely to be linguistically special, and that neuroplasticity provides evidence that (in key 

respects and to an appreciable extent) few if any of them ought to be considered 

developmentally robust, though their development seems to be definitely constrained by 

features intrinsic to particular regions of cortex (manifesting as domain-specific 

predispositions or acquisition biases). Along the way I hope to be able to articulate a 

schematically and neurobiologically precise framework for understanding modules and 

their supramodular interactions. 

 

There is a conspicuous lack of consensus surrounding the status of modules as 

neuroanatomical entities, in part because modularity has proven itself to be a highly 

versatile concept sustaining different research agendas across the biological and mind 

sciences. Are they functionally dedicated, innately designated (species-constant) regions 

of wetware whose operations may be described by algorithms (Quartz & Sejnowski 1994, 

p. 726); or are they in the nature of software systems having no phylogenetically necessary 

relation to specific cortical sites, be they dedicated or otherwise? Is there indeed room for 
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both types, or for hybrids combining features of both types (Horst 2011, pp. 224-225, 

261-262)? Fodor, perhaps sensing that the real interest of modules lies partly in their 

functional/neural dedication and ontogenetic robustness, considered that the first 

description could serve as a paradigm of modularity—a view which has the merit of being 

in broad agreement with the neurosciences (Bechtel & Mundale 1999; Anderson & Finlay 

2014, p. 5; but cf. Doidge 2007, pp. 291-297; Gold & Roskies 2008, p. 354; see §§ 4.2-4.3 

for further detail). Nevertheless in recent decades enthusiasts of modularity have been 

more willing to throw their lot in with alternative proposals or otherwise endorse 

increasingly anodyne suggestions about what a module really amounts to. Apart from the 

general explosion of discoveries in the neurosciences, new and dramatic evidence of the 

precise extent of neuroplasticity and neural reuse has necessitated a shift of emphasis 

away from implementation. The innateness hypothesis alone looks to be disastrously 

discredited if the potential for neuroplasticity is indeed as advanced as it appears, since it 

underscores the crucial role that learning must play in the acquisition of competencies 

otherwise presumed fixed or defined by characteristic ontogenetic pace and sequencing. 

The evidence of neural reuse, for its part, indicates that high-level cognitive tasks such as 

language processing are enabled by highly distributed neural networks comprised of very 

many smaller brain regions or nodes that are themselves multifunctional and domain-

general: the selfsame circuits are redeployed over and again across different tasks and task 

categories. This discovery potentially undermines the claim that such high-level cognitive 

feats reflect domain-specific competencies. Quandaries like these have understandably 

motivated the attempt to rescue the theory through a renewed emphasis on computational 

design (Jungé & Dennett 2010; Anderson 2010; Anderson & Finlay 2014, p. 5). 

 

Here I shall take as my guiding idealization something closer to Fodor’s paradigm 

of modularity, simple reason being that it has by far been the most influential account of 

faculty psychology in recent decades and the one which overwhelmingly animates, or at 

least frequently situates, discussions concerning the modularity of language (Chomsky 

1980a, pp. 39, 44; 1988, p. 159; 2002, pp. 84-86; Plaut 1995; Pinker & Jackendoff 2005, p. 

207; Fitch et al. 2005, p. 182; Collins 2008, p. 155; Fedorenko & Thompson-Schill 2014; 

see also Karmiloff-Smith 1992). In its neurophysiological and neuroanatomical respects 

Fodor’s paradigm module also closely resembles the notion of a brain module familiar to 

the neurosciences (see Chapter 4). Thus I take a module to be something more substantial 
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than a cognitive system. Specifically, I take a module to be an innately specialized and 

autonomous cognitive capacity reliably associated with a unique neural network. From 

my point of view, only a proposal along these lines—a special purpose, special structure 

device—has any chance of making modularity interesting and worth pursuing. I take the 

idea of functional decomposition simpliciter as uncontroversial, and if I were pressed to 

stipulate for sufficient conditions, I would lay down functional specificity (i.e. 

dissociability in principle) as the sine qua non of modularity (Carruthers 2006; Barrett & 

Kurzban 2006). I shall defend this position in Chapter 4. 

 

In the interests of full disclosure, let me stress that by “autonomous” I do not 

mean automatic, autonomic or mandatory, i.e. reflexive (rather than reflective) and 

therefore independent from central decision and control. I have a somewhat broader 

notion in mind, with automaticity representing only an especially extreme case. A system 

in my usage is autonomous when it can perform without conscious advertence, just as 

“skills that are practiced over and over acquire a certain degree of autonomy and 

insularity” (Ohlsson 1994, p. 224). An experienced pianist who does not deliberate over 

the arpeggios in a well-rehearsed performance, or who is having a conversation as she 

plays, even a driver having a conversation as she shifts gears—each capacity displays a 

measure of autonomy from central control. The operation is still subject to the will, and 

therefore not quite out of control, but runs on autopilot all the same. Actually, the 

examples of the pianist and the driver juggling more than one task, with one of the tasks 

running autonomously, share their juggling-act-like characteristics with language parsing 

and speech production. Fluent reading, too, where the process of instant character 

recognition runs autonomously of textual comprehension, is yet another example of 

information processing sharing features with expert musicianship, fine multi-tasking 

motor control, and language parsing (although of course reading, unlike language parsing, 

requires explicit instruction and drilling). These observations are consistent with the 

possibility that at least some modules are “made, not born” (Bates 1999).1 

 

																																																								
1  Independence from central decision and control is a concomitant of independence from central 
information (or “cognitive impenetrability”), a special kind of “informational encapsulation” (see next 
paragraph). 
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On the other hand by “specialized” or “dedicated” I shall mean more or less what 

Fodor means when he describes modules as informationally encapsulated, domain-

specific, functionally dissociable and neurally localized. Informational encapsulation 

refers to a module’s restricted access to information outside its own system-specific data 

store (e.g. a visual module’s being impervious to beliefs the agent has about what she is 

seeing2), while domain specificity refers to a module’s sensitivity to a restricted domain of 

inputs (e.g. visual, auditory, grammatical, etc.; see the discussion in §§ 2.4.3 and 5.1 for a 

clarification—and restatement—of this principle). A system is dissociable if it handles a 

specific function that can be selectively impaired, and localized when it is subserved by 

relatively circumscribed or contiguous neural circuitry (Fodor 1983, p. 99; Prinz 2006; 

Robbins 2010; Gerrans 2014, p. 46). For convenience we can refer to a specialized module 

as an “anatomical” module (Bergeron 2007; Anderson 2010). Occasionally it will be 

necessary to use the term “specialized” in a somewhat stricter sense than applies to 

anatomical modules. Specialization in this stricter sense refers to nonreusability across 

multiple domains, which is essentially a very rigid kind of domain specificity. The 

clearest examples of units specialized in this stronger sense would be the constituent 

elements of an anatomical module: the dedication of modular elements to their parent 

module renders them dedicated or specialized in a strict sense. The parent module will be 

specialized in a loose sense of the word at least—specialized in the sense that it does some 

functionally discrete thing, and presumably the same thing every time; but if the parent is 

reusable across multiple cognitive domains, it will not be specialized in the stricter sense I 

have in mind (see § 5.1 for an extended discussion). 

 

Now while the foregoing notion of modules suffices to furnish a general target of 

inquiry, there are only three features of such modules to which I shall be drawing special 

attention here, namely innateness, functional dissociability and neural localizability. 

These three properties typify what seems to be a sort of defeasible starting position in 

many discussions of modularity (see e.g. the observations by Barrett & Kurzban 2006, pp. 

638, 641; Bergeron 2007)3 and are prominent within the accounts of those defending the 

																																																								
2 This is but one instance of informational encapsulation, often referred to as “cognitive impenetrability.” 
When I use the term “informational encapsulation,” I mean it in the broadest sense, not in the limited sense 
denoting impenetrability alone. 

3 Peter Carruthers (2006, p. 2) is even more bluntly parsimonious (“In the weakest sense, a module can just 
be something like: a dissociable functional component”), though admittedly some, indeed Fodor himself, 
have nominated other properties such as encapsulation as the sine qua non of modularity. 
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existence of a language module, 4  presumably because, in the context of language 

processing, they offer an ideal segue into more abstract discussions concerning such 

functional characteristics as encapsulation and domain specificity (see Fedorenko & 

Thompson-Schill 2014 and Anderson & Finlay 2014, p. 4; also note Chomsky 1975, pp. 

40-41). Notice moreover that dissociability and localization are the essential ingredients in 

what I have called an anatomical module (Bergeron 2007, pp. 175-176; Anderson 2010, p. 

248). I shall hence be evaluating these properties in the light of evidence of 

neuroplasticity and neural reuse, pursuing the implications of these exciting new 

developments in neuroscience for our understanding of the modularity of mind and the 

language module in particular. The aim is to explore candidly what these developments 

suggest about the existence of modules in the robust sense I take to be interesting. 

 

The structure of the thesis will be as follows. Chapters 2 and 3 provide an 

overview of both neuroplasticity and neural reuse in the human brain. The brain exhibits 

quite remarkable plasticity. I explore various forms of plasticity, of which synaptic 

plasticity is perhaps the most important given its likely role in the formation of cortical 

maps. This chapter concludes with a brief examination of a special kind of cortical map 

reorganization, namely, supramodal plasticity. This leads directly onto the notion of 

neural reuse, which is surveyed in Chapter 3. 

 

Chapters 4 through 6 pursue the implications of neural reuse and plasticity for the 

modularity of mind. Chapter 4 presents an overview of the history of modular theorizing 

about the mind, and uses this historical context to present various conceptions of 

modularity. I argue against soft conceptions of modularity, and defend dissociability as 

the sine qua non of modularity. Chapter 5 considers the implications of neural reuse, 

while Chapter 6 considers the implications of neuroplasticity. Chapter 7 then considers 

the implications of both neural reuse and neuroplasticity for language. Chapters 8 and 9 

round off the argument by providing a critical reexamination of the doctrine of multiple 

realization, casting doubt on the empirical claim that psychological states are multiply 

realized. The aim of Chapter 8 is to refute the idea that cognitive science cannot be 
																																																								
4 In most cases the precise notion of a “language module” at stake is somewhat more fine-grained than this 
crude description might initially suggest, contemplating such distinct varieties as both Fodor’s sentence 
parser and the broad language faculty that encompasses Chomsky’s Merge. Notice that in Chomsky’s usage, 
the terms language “organ,” “faculty,” “module” and “acquisition device” are used interchangeably (see 
e.g. Chomsky 1980a, pp. 39, 44; 1988, p. 159; 2002, pp. 84-86). See Chapter 7. 
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constrained by neuroscience, an idea which has regrettably obstructed fruitful 

collaboration between neuroscience and psychology in the past and which could prove to 

be even more damaging in the future, when evidence of neural reuse looks set to make 

things a whole lot more interesting. Pursuing the matter a little further, Chapter 9 

represents something of a concession to those who contend that psychological states are 

multiply realized. Insofar as one particular and highly influential argument against 

multiple realization is, as I contend, apt to mislead the mind-brain identity theorist, it 

behooves me to be upfront about it. But Chapter 9 is in no way intended to detract from 

the thrust of the argument of Chapter 8. I conclude with some final reflections in Chapter 

10. 
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2 
_____ 

 

Aspects of neuroplasticity 
 

 

 

 

 

 

2.1 SCOPE OF CHAPTER 

 

This chapter reviews the general science of neuroplasticity with a focus on those aspects 

of relevance to the modularity of mind. The need for such a review stems ultimately from 

an interest in the implications of neuroplasticity, particularly for the understanding of 

early development. While not enough is known about the molecular and cellular 

mechanisms underpinning neuroplasticity to warrant definite conclusions about 

development, tentative suggestions, grounded firmly in the available evidence, can and 

should be put forward. These form the subject of Chapter 6. The present chapter 

provides for the most part only a précis of the evidence as it stands. 

 

2.2 THE NATURE OF PLASTIC CHANGES IN THE BRAIN 

 

2.2.1 Definition 

 

Learning raises an interesting question for the cognitive and neural sciences. On the one 

hand the nervous system appears to be wired very precisely. On the other hand 

mammalian and especially human behaviour can be extremely flexible. If connections 

between the main signaling units of the nervous system are set during early development, 

how is it that behaviour and its neural underpinnings can be flexible at all? What is the 

extent of neural fixity and flexibility in early development and how is it related to the 

stability and dynamism exhibited under different conditions in later life (e.g. during 
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learning or rehabilitation)? The best answer so far attempted and empirically 

substantiated is the plasticity hypothesis (Kandel et al. 2013, p. 37). This recognizes what 

for most of the twentieth century was denied, that even after a critical period in early 

childhood the brain retains its plastic potential throughout life. It appears that “chemical 

synapses are functionally and anatomically modified through experience and learning as 

much as during early development” (Kandel et al. 2013, p. 37). Plasticity is an intrinsic 

and persistent property of the nervous system without which it would be impossible to 

understand normal psychological function, or indeed pathological and contrapathological 

responses to events throughout life (Pascual-Leone et al. 2005, p. 378). Plasticity is not to 

be conceived as an occasional or exceptional state of the nervous system—it is in fact its 

normal and ongoing condition (Pascual-Leone et al. 2005, p. 379). What is more, similar 

mechanisms appear to be at work in both adult plasticity and early development, 

suggesting that the mechanisms of adult learning and developmental plasticity are to 

some considerable extent conserved (Saitoe & Tully 2001; Kolb et al. 2001, p. 224; 

Neville & Bavelier 2001, p. 261). This last point is crucial, since it is really only in virtue 

of such parallels that adult neuroplasticity can serve as a window onto early 

developmental processes and carry significance for traditional debates in psychology, for 

example about the innateness of language. As Laurence and Margolis observe: 

 

Widespread and significant instances of neural plasticity suggests an inherent 
openness to the functions that any cortical area can take on. If this is right, then 
the brain’s concept acquisition capacities needn’t be innately constrained toward 
any particular outcome. Instead cortical circuits might simply form as required to 
accommodate a learner’s needs given whatever contingent sensory input has been 
received and the wiring that has been previously established. (2015, p. 124) 
 

Neuroplasticity has been defined as “a change (either a strengthening or 

weakening) in synaptic efficacy brought about through experience” (Rose & Rankin 2001, 

p. 176). In fact synaptic plasticity is only one of a family of brain plasticities falling under 

the general banner of neuroplasticity. In its widest sense neuroplasticity refers simply to 

“the capacity of the nervous system to modify its organization,” especially in response to 

experience, and includes the varied circumstances of normal development and 

maturation, learning in both immature and mature organisms, recovery of function after 

injury and compensation following sensory deprivation (Neville & Bavelier 2001, p. 261). 

At the same time neuroplasticity transverses every level of organization in the brain, 
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synaptic events having counterparts in both higher and lower levels of organization 

running all the way from genes right through to complex behaviour (Shaw & McEachern 

2001). These facts should not, of course, be taken to suggest that a synaptic definition of 

neuroplasticity is necessarily mistaken. Indeed it is just because the synaptic level 

continues to provide the best understood and arguably most powerful model of 

neuroplasticity available—synaptic plasticity has a probable role in all of the 

developmental stages just described, for instance—that it has become customary to regard 

synaptic plasticity as broadly representative of the phenomenon. Given my concern with 

modules and the likely role of synaptic plasticity in the arrangement and rearrangement of 

cortical circuitry (Neville & Bavelier 2001, p. 261; Shaw & McEachern 2001, p. 434), 

there is actually good reason for framing the discussion of neuroplasticity here in terms of 

synaptic plasticity. Synaptic plasticity supplies a familiar and tractable neurobiological 

model for understanding those cases of neuroplasticity which are likely to be of direct 

concern to the modularity of mind, namely cortical reorganization and memory 

consolidation. Still it is important to appreciate that the term “neuroplasticity” has a 

significantly wider scope than the plasticity associated with merely one level of the brain’s 

organization; and after a brief treatment of synaptic plasticity revealing the mechanisms 

underlying plastic change, I must ultimately turn to consider cortical map 

reorganization—an instance of neuroplasticity that ought to be prioritized in any serious 

discussion of modularity (Rowland & Moser 2014). (As for the relation between modules 

and cortical maps, see the discussion in § 4.3.) 

 

2.2.2 Synaptic plasticity 

 

Neurons are the basic cellular units of the nervous system—self-sufficient, specialized 

cells whose primary function is to receive, integrate and transmit information throughout 

the body. Any neuron will receive information from potentially many thousands of other 

neurons, such connections consisting of microscopically small clefts between the 

terminals (“axons”) and receptive fibres (“dendrites”) of adjacent neurons. The clefts 

between individual axonal branches and dendritic spines are known as “synapses,” and 

synaptic plasticity involves alterations in the strength of such connections. Neural 

connections may be strengthened or weakened in a variety of ways, but the most 

frequently cited mechanism involves adjustments to the quantity of neurotransmitter 
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released from the presynaptic cell and/or the number of postsynaptic receptors which 

determine how effectively the postsynaptic cell can respond to the quantity of 

neurotransmitter released presynaptically. Strengthening occurs typically by persistent 

stimulation of the postsynaptic cell. A neurotransmitter’s release into the synaptic cleft 

initiates a cascade of biochemical events that may lead to the excitation (or “potentiation”) 

of the postsynaptic neuron. Research has repeatedly turned up a number of 

neurotransmitters, neuromodulators and ions that appear to be crucial for synaptic 

plasticity, including glutamate and calcium ions (Ca++). Glutamate is among the most 

excitatory of neurotransmitters so far discovered and works by inducing a postsynaptic 

calcium influx which, through repeated stimulation, may result in an action potential. 

More precisely, the influx of Ca++ leads to increases in the number and efficacy of 

postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (or “AMPA”) 

receptors, themselves crucial for consolidating synaptic connections by providing the 

primary excitatory input drive on the postsynaptic neuron.  

 

Initially, synaptic plasticity was thought to be limited to such molecular 

mechanisms alone, entailing few if any changes to the shape of dendritic spines or the 

number of axonal branches and sprouts (i.e. neuromorphological changes leading to 

“synaptogenesis” and synaptic “pruning”—the establishment of new connections and 

elimination of existing connections), while “neurogenesis” (the generation of new 

neurons) was understood to be an exclusively developmental process. It is now known 

that beyond enhanced signaling between neurons, synaptic plasticity routinely involves 

changes to neuromorphology, and that neurogenesis occurs well into adult life, not just 

perinatally as was once thought (Rose & Rankin 2001, p. 176; Fuchs & Flügge 2014). 

 

Two varieties of plasticity widely considered to involve changes at the synapse are 

cortical map plasticity (otherwise known as representational or topographic map 

plasticity) and the cellular changes attendant on learning and memory consolidation 

(Buonomano & Merzenich 1998). Cortical map plasticity refers to the detailed remodeling 

of cortical maps in response to “behaviourally important experiences throughout life” 

(Buonomano & Merzenich 1998, p. 150). Evidenced across different modalities in a 

significant number of mammalian species, including humans, cortical map reorganization 

results not just from behavioural changes, environment and injury in later life, but is at 
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least partly responsible for some kinds of early perceptual and motor learning 

(Buonomano & Merzenich 1998, p. 150). It covers language cross-lateralization 

(migration of function from left to right hemisphere) following injury or trauma early in 

life (and even later in life, with adequate rehabilitative training), as well as, perhaps most 

especially, the plasticity of sensory and motor maps in response to use or trauma. Notice 

that in the context of cortical map plasticity it becomes more useful to think of plasticity 

as the opening and closing (or broadening and narrowing) of afferent input channels. It is 

this plasticity which seems to have most recently captivated philosophers (see further 

discussion at § 8.2.2.1). 

 

While the cellular changes involved in learning and memory consolidation are also 

thought to depend on synaptic plasticity, it has been far from easy obtaining empirical 

confirmation of this connection, or indeed of whether the same plastic mechanisms are 

involved in both cortical map plasticity and memory-related synaptic plasticity 

(Buonomano & Merzenich 1998, p. 150). Mainstream opinion in the field seems to err on 

the side of an affirmative connection on both counts (Buonomano & Merzenich 1998, pp. 

152, 153), but Buonomano and Merzenich (1998, p. 179, cf. p. 165) cautiously conclude 

that, as for the connection between synaptic plasticity and cortical map plasticity, “we do 

not yet have a sufficient understanding of synaptic and cellular plasticity to fully account 

for the experimental data on cortical representational reorganization.” 

 

The kind of memory involved is important to clarify here. Of the two broad 

classes of memories distinguished by psychologists, i.e. explicit or declarative memory, on 

the one hand (comprising both so-called episodic and semantic memory), and implicit or 

procedural memory, on the other, it is implicit memory that is usually intended (Rose & 

Rankin 2001, p. 176) (see Fig. 1). Termed “procedural” memory on account of its role in 

the performance of routine procedures involving neither deliberation nor specific 

memories of having carried them out previously (e.g. brushing one’s teeth, tying one’s 

shoelaces, riding a bicycle, etc.), it is the memory store for automated action cued by 

specific contexts and stimuli. Implicit memory is more likely to reflect the 

neurophysiology of learning and memory—respectively the establishment and 

maintenance of altered synaptic connections, on one view—than is an explicit form of 

memory such as episodic memory; implicit memory epitomizes the rule that “practice 
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makes perfect” and is after all a kind of habituation, which “forms the basis of selective 

attention and is thus the foundation of all other forms of learning” (Rose & Rankin 2001, 

p. 177). To that extent implicit memory, which is postulated to be represented in vast 

interconnections of neural networks across the brain, including the cortex, can be 

expected to be of some relevance to modularity, which (from Fodor’s perspective) is also 

understood to underlie targeted and automated behaviour and involve interconnected 

cortical networks, albeit of a less distributed character. 

 

 
 
 
Figure 1. The different types of memory and their representations in the brain. Source: Kandel & 
Siegelbaum 2013, p. 1462. 
 

The clearest case of synaptic plasticity, and one which is likely to play some role 

in or otherwise serve as a model for memory consolidation—and possibly many other 

varieties of neuroplasticity—is hippocampal long term potentiation (“LTP”), which, as 

its name suggests, is the enduring association of neurons through repeated afferent 

activation in the hippocampal formation. While its role in learning and memory is not 

conclusively established, some such role has been conjectured from its resemblance to 

Hebbian plasticity, named after the Canadian psychologist D.O. Hebb. Hebb’s (1949) 

influential model of plasticity was advanced to explain the long-lasting changes in 

synaptic strength which he hypothesized to underlie learning and memory. He assumed 

that stable changes in synaptic efficacy could occur through interactions among neurons: 
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When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change takes 
place in one or both cells such that A’s efficacy, as one of the cells firing B, is 
increased. (1949, p. 62) 
 

Hebb’s postulate asserts that simultaneous or rapidly successive pre- and postsynaptic 

activity results in a strengthened connection between cells (“cells that fire together wire 

together, cells that fire apart wire apart,” as it is often put). This requires a “coincidence 

detector” that records the co-concurrent or rapidly successive activity of pre- and 

postsynaptic neurons (Buonomano & Merzenich 1998, p. 154). In hippocampal LTP a 

subtype of the glutamate receptor, so-called N-methyl-D-aspartate (or “NMDA”) 

receptor, serves this coincidence-detecting function by facilitating the postsynaptic influx 

of Ca++ (which, if persistent, typically results in a strengthened connection via increased 

AMPA receptor efficacy, as we saw earlier). Since LTP appears to reflect something like 

Hebbian associative plasticity, many neuroscientists have not hesitated in postulating 

LTP as the neurochemical basis of learning and memory. It has the unique 

phenomenology, induction characteristics and longevity “to place it firmly as a candidate 

for the storage of experiential memory” (Teyler 2001, p. 101).1 

 

While LTP is generally regarded as crucial to memory storage, some 

neuroscientists are more circumspect, either denying that the evidence of LTP 

subserving learning and memory is strong enough to justify the faith placed in this 

mechanism (Cain 2001, p. 126), or holding out that LTP might instead be “a generic 

mechanism for increasing synaptic gain throughout the brain whenever increases in 

synaptic strength are needed,” and therefore “a general purpose mechanism by which 

synapses can increase their influence…regardless of the kind of circuit in which they are 

embedded” (Teyler 2001, p. 105). An equally pessimistic estimate has it that “if LTP 

occurs naturally in the behaving animal, it can at best be said to underlie circuit 

formation, not learning or memory” (Shaw & McEachern 2001, p. 434). LTP may then, 

on a minimal reading, be simply a means by which neural networks are formed and 

maintained. But what few would deny is that LTP is an important neurophysiological 

substrate supporting various manifestations of neuroplasticity. In fact if the connection 
																																																								
1 There is evidence that cortical LTP shares many of its properties with hippocampal LTP (Buonomano & 
Merzenich 1998, pp. 157, 174). 
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between implicit memory and modules is rightly drawn, LTP, even on a deflationary 

view, could be seen as offering support to the idea that similar synaptic mechanisms are 

implicated in the consolidation of memory, the development of modules and the 

migration of cortical maps, which like memories and modules are also represented in 

stable, if more local, networks of neurons in the brain. (Rowland & Moser (2014) present 

evidence that even episodic memory has modular organization, resembling the 

neuroanatomical and neurophysiological features of sensory and motor cortical maps, e.g. 

columnar structure and topographic arrangement. See §§ 2.4 and 4.3 for elaboration.) 

 

2.3 NEUROPLASTIC RECOVERY DURING DEVELOPMENT 

 

While critical period plasticity may under the right set of circumstances be “reopened” in 

later life, the potential for plastic recovery following injury is still very much a function of 

age. During development, so-called spontaneous changes to the brain resulting from 

injury are likely overall to reduce the plasticity of the region affected; “[i]n contrast, when 

the brain fails to change in response to injury there is considerable capacity for 

modification of cortical circuitry,” particularly through experience, and here the general 

rule seems to be that the earlier the injury and therapeutic intervention the better the 

chance of functional recovery (Kolb et al. 2001, pp. 236-237, 239). This is ostensibly 

because earlier interventions influence spontaneous changes “in such a way as to 

maximize functional recovery.” On the whole, younger animals are more plastic than 

older ones, both when it comes to experience- or activity-dependent learning and 

spontaneous recovery from injury (Shaw & McEachern 2001, p. 430). 

 

The developing brain is obviously different at different stages, so the character of 

spontaneous responses to injury can naturally be expected to differ with age. (Whether 

these responses are beneficial will also depend on age.) The best studied case of 

mammalian plasticity is probably in the rat. Neurogenesis in the rat is essentially 

complete by birth, and produces a cortex that is initially equipotential. Between 7-10 days 

of age, the process of cell migration in the cortex—a process which begins well before 

birth—comes to an end, at which point activity-independent cell differentiation begins. 

This process itself ends by about 15 days of age (i.e. at about the time of eye opening), 

although synaptogenesis continues for a further 2-3 weeks beyond this point. 
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Compensation for injury suffered during neurogenesis can be quite extensive (Kolb et al. 

2001, pp. 228-229). Even the killing of all cerebral neurons by X-radiation appears to 

provoke regeneration resulting in up to 50 per cent of the cerebrum being rebuilt (Kolb et 

al. 2001, p. 229). Injuries occurring during the period of cell migration and 

differentiation, however, are functionally devastating, with effects even more pronounced 

than those caused by the same injuries in adult rats. Then again during the period 

immediately following this—and therefore concurrent with a period of intense 

synaptogenesis—the brain’s capacity for recovery seems to be optimal (Kolb et al. 2001, 

p. 230). 

 

Just why young neurons are more plastic than older ones is unclear, but a very 

plausible hypothesis attributes it to the impact of homeostatic mechanisms after the 

critical period (Shaw & McEachern 2001, pp. 443-444). The absence of homeostatic 

regulatory mechanisms (like lateral inhibition) during critical periods means that 

potentiation is ubiquitous and the central nervous system highly unstable. Later, 

however: 

 

homeostatic regulation of receptors and synapses becomes paramount, and lateral 
inhibition becomes a dominant feature of neural circuits and the interaction 
between systems. Given such mechanisms of global homeostasis, the alterations 
that do occur in the adult CNS only do so in response to the strongest stressors. 
(Shaw & McEachern 2001, pp. 443-444) 

 

One upshot of this explanation is that in one sense the brain remains intrinsically as 

plastic as ever, its plastic potential merely suppressed by mechanisms that can themselves 

be reversed, as we now know they can, “under precisely defined and controlled 

conditions.” 

 

2.4 CORTICAL MAP PLASTICITY 

 

2.4.1 Intramodal plasticity 

 

The most convincing evidence of cortical map plasticity comes from studies of plastic 

changes to adult primary sensory cortices. Sensory cortical areas relating to touch, vision 

and hearing “all represent their respective epithelial surfaces in a topographic manner” 
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(Buonomano & Merzenich 1998, p. 152). This means neighbouring cortical areas respond 

to neighbouring sensory receptors. Somatosensory cortex maps areas of the skin’s surface 

somatotopically such that “neighbouring cortical regions respond to neighbouring skin 

sites.” Likewise auditory cortices map tones tonotopically, and visual cortices map 

features of the visual field retinotopically. Close to three decades of research now confirm 

the potential for these sensory cortices and their somatotopic, tonotopic and retinotopic 

coordinates to undergo plastic changes in a use-dependent manner (Buonomano & 

Merzenich 1998, p. 152). 

 

The plastic changes in view here could well include the recovery of function after 

injury to the cortex, for example language cross-lateralization following trauma (Polger 

2009, p. 464; Clark 2009, p. 365). In such cases a certain psychological function, be it 

tactile, visual, auditory, motor or linguistic, is mediated by a specific region of cortex at 

time t1, and by a different region of cortex at time t2 (Polger 2009, p. 464). A particularly 

striking example of this is seen in the case of children who develop normal or near-normal 

language abilities after a left hemispherectomy, in which the left cerebral hemisphere 

(which typically mediates language) is either disabled or removed in its entirety 

(Laurence & Margolis 2015, p. 123). A child known as EB was found to have recovered 

most of his language skills two years after undergoing a left hemispherectomy at the age 

of two and a half and tested as virtually normal with respect to linguistic ability at age 

fourteen, his language faculty now subserved by regions in his right hemisphere (Danelli 

et al. 2013). 

 

While such instances of plasticity are certainly impressive, and reveal that the 

phenomenon is not confined to sensory-motor cortices alone, more typical examples 

(indeed the first to be discovered) involve the expansion of cortical maps to neighbouring 

regions of intact cortex that have been deprived of sensory input from within the same 

modality as that subserved by the invading cortex, for example as might occur when the 

cortical area corresponding to one manual digit invades the neighbouring area 

corresponding to the adjacent digit following a loss of input to the adjacent digit 

(Rauschecker 2001). This phenomenon is known as “intramodal” plasticity. The earliest 

studies of neuroplasticity reported intramodal effects in adult monkeys. Using the 

topographically arranged somatosensory cortical map as the dependent variable, it was 
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found that when deprived of input, either by median nerve transection or digital 

amputation, though initially unresponsive it did not remain unresponsive and was soon 

activated in response to adjacent inputs (22 days in the case of transection, 2-8 months in 

the case of amputation). Similar results were reported after denervation or amputation in 

the raccoon, flying fox, cat and rat, and “large-scale remodeling can occur in human 

somatosensory and motor cortical areas in the weeks or months immediately following 

limb amputation” (Buonomano & Merzenich 1998, pp. 163, 165). The results are equally 

dramatic for the visual and auditory cortices, demonstrating that “when a given cortical 

area is deprived of its normal afferent inputs, it reorganizes so that the deprived area 

becomes responsive to sensory inputs formerly represented only within the cortical 

sectors surrounding those representing lesioned input sources” (Buonomano & 

Merzenich 1998, p. 167). 

 

 It is as well to note that intramodal plastic changes may be induced without 

sensory deprivation. Studies on somatosensory, visual and auditory cortices show that 

intramodal plastic changes can occur by training animals on specialized tasks. In humans, 

magnetoencephalography (MEG) reveals that hand representations of Braille readers are 

significantly larger for the right index finger than for the left index finger or for the right 

index finger of non-Braille readers (Pascual-Leone & Torres 1993). Likewise the digital 

representation of string players is larger for the left hand than for the right hand or the 

left hand of control subjects (Elbert et al. 1995). 

 

2.4.2 Crossmodal plasticity 

 

Whereas intramodal plasticity (as its name suggests) occurs within a modality, 

“crossmodal” reorganization involves “expansion of maps in one modality as a result of 

deprivation in another” (Rauschecker 2001, p. 244). The changes here are more obviously 

compensatory. Cortical maps used for, say, hearing, might project into occipital cortex 

following deprivation of visual stimuli, whereupon occipital cortex acquires the 

processing structures typical of auditory cortex; or visual deprivation might lead to 

recruitment of primary visual cortex for tactile processing (Noppeney 2007). And since 

the area supporting the lost function is put to an alternative use, crossmodal plasticity 

actually makes recovery of original function quite challenging (Pascual-Leone et al. 2005, 
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p. 395). While it had previously been supposed that interventions must be drastic to 

induce crossmodal plastic changes, “it is now clear that simply withholding the normal 

pattern of sensory experience in one modality is sufficient to reorganize the neural 

representation of the remaining senses”; furthermore, “[i]t appears that the same synaptic 

mechanisms are invoked that also rule synaptic changes within the same modality” 

(Rauschecker 2001, pp. 244-245). Crossmodal changes require that cortical maps receive 

input connections, albeit indirectly, from new epithelial surfaces, and there are essentially 

two ways for this to occur: either via synaptogenesis, in which new connections are 

established between the deprived cortical region and a region which already has the 

relevant connections to the sensory end-organ; or the “unmasking” 

(strengthening/rearrangement/potentiation) via LTP or some other synaptic plastic 

mechanism of existing connections between the deprived cortex and the sensory end-

organ and/or its associated cortex (Rauschecker 2001, p. 255; Ptito, Kupers et al. 2012). 

Unmasking is likely preliminary to synaptogenesis (Pascual-Leone et al. 2005, pp. 379, 

394-395; Merabet & Pascual-Leone 2010, p. 48). There is experimental support for both 

mechanisms in crossmodal plasticity, and both are likely to play a role in intramodal 

plasticity. 

 

The extent of crossmodal plastic change is of course partly a function of time 

(Noppeney 2007). Short term changes that enhance the processing capabilities of spared 

modalities are probably the effects of unmasking, and consequently more readily 

reversible after input restoration (Pascual-Leone et al. 2005, pp. 390-391; Noppeney 

2007, p. 1177). Blindfolding induces rapid changes that are just as swiftly reversed after 

visual input restoration. Long term deprivation, on the other hand, is more likely to result 

in sustained structural reorganization through synaptogenesis following initial unmasking 

(Pascual-Leone et al. 2005, pp. 390-391). This would no doubt explain why the most 

dramatic crossmodal impacts are observed in cases of early onset and congenital 

blindness: “functional reorganization is particularly pronounced in early onset blindness” 

(Noppeney 2007, p. 1170). The occipital cortices of such subjects, for instance, appear to 

be functionally important for Braille character identification (although not detection), 

suggesting a functional contribution of the reorganized occipital cortices in complex 

tactile discrimination (Noppeney 2007, pp. 1173-1174). Early and congenitally blind 

subjects routinely outperform sighted subjects in both episodic and semantic memory 
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tasks and may even require the occipital pole for higher-level cognitive and semantic 

processing (Noppeney 2007, pp. 1171, 1174). 

 

2.4.3 Supramodal (or “metamodal”) organization 

 

Not only congenitally and early blind subjects but sighted subjects too have been found to 

exhibit occipital cortex activation during nonvisual information processing (Leo et al. 

2012, p. 2). The activation in such cases, however, is not straightforwardly crossmodal, 

since it requires neither sensory deprivation nor special training. While any activation of 

occipital cortices in sighted subjects performing nonvisual tasks might be ascribed to a 

preference for visualizing nonvisual afferents, the same response pattern in congenitally 

blind subjects—by definition lacking vision since birth—reveals that some other principle 

of cortical functional organization is involved. In these cases occipital cortices do not 

merely serve as the site for nonvisual information processing, as might be presumed to 

occur in a standard case of crossmodal plasticity, but seem to be contributing something 

visual to the nonvisual input, and this is no less true for blind subjects (Striem-Amit & 

Amedi 2014, see below). That is to say nonvisual information is apparently being 

processed visually, in contrast to crossmodal plasticity which would (presumably) involve 

the nonvisual processing of nonvisual afferents, albeit in primary visual cortex. Variously 

termed “supramodal,” “metamodal” or “amodal” organization (Pascual-Leone & 

Hamilton 2001; Striem-Amit & Amedi 2014; Laurence & Margolis 2015), evidence for 

the phenomenon came originally from studies of the dorsal and ventral visual pathways, 

implicated, respectively, in space and motion discrimination and object/shape category 

recognition (the “where” and “what” visual streams, see Fig. 2). More recently, 

supramodally active regions have been confirmed beyond the occipital cortices (Leo et al. 

2012, p. 2). 

 
    Figure 2. The “where” (top) and “what” (bottom) visual processing streams. 
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 The nature of supramodal organization is best illustrated by studies involving 

early and congenitally blind subjects. The dorsal (“where”) visual pathway of such 

subjects is active during tactile and auditory motion discrimination tasks and reflects the 

activation patterns of sighted controls performing corresponding tasks (Ptito, Matteau et 

al. 2012, p. 2). Similarly the ventral (“what”) visual pathway of early and congenitally 

blind subjects is active during both haptic (tactile) and nonhaptic (electrotactile) object 

exploration tasks, again reflecting activations observed in sighted controls performing 

corresponding tasks (although blind subjects activated larger portions of the ventral 

stream during nonhaptic tactile shape discrimination than sighted controls) (Ptito, 

Matteau et al. 2012, p. 2). In a very recent study it was shown that visual experience in 

the perception of body shapes is not necessary for the activation of the visual extrastriate 

body area (EBA) (Striem-Amit & Amedi 2014). Congenitally blind subjects were trained 

to use a “visual-to-auditory sensory substitution device” which converts visual images 

into auditory “soundscapes.” The EBA was robustly active when subjects were presented 

with body soundscapes. Hence “despite the vast plasticity of the cortex to process other 

sensory inputs” (i.e. crossmodal plasticity), these findings suggest “retention of functional 

specialization in this same region” (Striem-Amit & Amedi 2014, p. 4). The dorsal and 

ventral processing streams, and the EBA in particular, appear to be modular, 

developmentally constrained and functionally preserved despite complete early and 

congenital visual impairment. That they are responsive to sensory information channeled 

from other modalities also suggests that these regions are not strictly domain specific, 

since they are not beholden to specific sensory transduction pathways. Instead they seem 

to be sensory-independent and task-selective (Striem-Amit & Amedi 2014, p. 5). The 

preexisting intermodal connections that are unmasked under crossmodal influence may, 

apparently even in the absence of crossmodal plastic unmasking, supply the critical 

cortical infrastructure supporting this supramodal dynamic (Pascual-Leone & Hamilton 

2001, p. 439; Pascual-Leone et al. 2005, pp. 393-394; Leo et al. 2012, p. 2). The original 

motivation for  domain specificity might have been rationalized in roughly the following 

way. Any module must (minimally) have a specific function which it “knows” to perform 

on just the right occasion/s. Cognitive scientists can explain this with the suggestion that 

a specific input or external stimulus cues the module to respond (Pascual-Leone & 

Hamilton 2001, p. 431). What supramodal organization vividly demonstrates, however, is 

that inputs need not be external stimuli—internally mediated stimuli across modalities 
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are normal—and that any one module will typically be sensitive to more than one 

stimulus, including those channeled along intermodal pathways. Put another way, it 

would appear that modules are frequently reused.2 I shall explain this in greater detail in 

the following chapter. 

 

 Compelling evidence of supramodal organization also comes from subjects whose 

senses are intact. (This material does not speak to the kind of plasticity we have been 

considering so far in this chapter, but it is related in ways that will be clearer in the next 

chapter, as well as Chapter 6.) It had already been known that unisensory cortices may be 

active when presented with stimuli coming through other modalities, as when a single 

stimulus component of a typically bimodal event with a close semantic connection is 

presented on its own, for example the sound of tools, the voice of a loved one, the sight of 

lips mouthing words, and such like (Hirst et al. 2012). Learning and conditioning of 

arbitrary pairings of unrelated stimuli may also produce these results (Hirst et al. 2012, p. 

2). What was not confirmed until recently is whether these results depended on a prior 

semantic association, or otherwise “an explicit conditioning paradigm, or prolonged, 

habitual co-occurrence of bimodal stimuli” (Hirst et al. 2012, p. 2). Hirst et al.’s (2012) 

clinical study confirmed that even without sensory deficits, training or semantic 

associations primary visual cortex exhibits an increased number of active neurons when 

presented with sounds alone provided subjects are preexposed to the auditory and visual 

stimuli. There is also evidence that the occipital cortex of sighted subjects is active during 

tactile processing of orientation and, perhaps most astonishingly, that semantic word 

generation in sighted subjects depends partly on bilateral occipital cortices, regions that 

have always been supposed to be among the most specialized in the brain (Pascual-Leone 

et al. 2005, p. 394). Studies by Antonio Damasio and Alex Martin were among the first to 

demonstrate activation of motor areas during verb retrieval tasks and visual areas during 

noun processing tasks such as naming colours and animals (Damasio & Tranel 1993; 

Damasio et al. 1996; Martin et al. 1995; 1996; 2000). Merely the sight of manipulable 

artifacts, indeed just seeing their names, activates parts of the brain associated with 

prehension (Chao & Martin 2000). 

																																																								
2 Cf. Barrett & Kurzban (2006, pp. 634-635), who argue that something like task selectivity defines formal 
domain specificity, although it is often enough construed as evidence of a domain-general system: they 
observe that “there is no natural line that separates domain-specific from domain-general mechanisms.” See 
§ 5.1 for elaboration. 
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 The material presented in this chapter is by no means intended to serve as an 

exhaustive or even necessarily comprehensive account of the fascinating field of 

neuroplasticity. But what I have provided ought to be sufficient to support the claims I 

make in Chapter 6. In the next chapter I provide a synopsis of what could well be 

regarded as yet another class of neuroplastic responses, responses which are, however, 

sufficiently distinctive in character when compared with cortical map plasticity and 

memory consolidation as to warrant separate consideration. 

 

2.5 SUMMARY 

 

The brain exhibits an impressive degree of plasticity. Plasticity is really an intrinsic 

feature of the nervous system, not an exceptional or occasional state. Neuroplasticity 

comprises a family of different types of plasticity. Of these synaptic plasticity is perhaps 

the best understood variety and plays an important role in cortical map reorganization 

and memory consolidation. Cortical map plasticity is of direct relevance to any discussion 

of modularity. There are two types of cortical map plasticity: intramodal and crossmodal. 

Crossmodal plasticity is likely to arise from the underlying supramodal (or “metamodal”) 

organization of the brain. 
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3 
_____ 

 

Neural reuse and recycling 
 

 

 

 

 

 

3.1 WHAT IS NEURAL REUSE? 

 

Our brief survey of neuroplasticity led us to a consideration of one rather striking feature 

of neural organization, what is variously termed “supramodal,” “metamodal,” or 

“amodal” organization. This feature of brain organization makes it possible for a region of 

the brain typically responsive to a unique stimulus to respond to input mediated by a 

different modality and thus for the cooperation of neural ensembles in the absence of 

standard inputs. We saw that supramodal plastic changes may be distinguished from 

crossmodal changes in virtue of the altered regions retaining something of their original 

character and neural function—their contribution has not been wholly or in many cases 

even primarily subordinated to the processing demands of the alternative modality. That 

such ensembles appear to be operative in normally sighted and hearing adult subjects 

suggests, furthermore—perhaps somewhat surprisingly—that supramodal organization is 

a latent feature of the normally functioning brain. We must now stop to consider how 

such evidence forces us to rethink some basic assumptions in cognitive and neural 

science. It is not the recruitment of multiple brain areas or modules that gives pause for 

thought here, for no doubt complex tasks will require a degree of intermodular 

cooperation. What is striking is the possibility of significantly more overlaps between the 

neural regions implicated in higher cognitive functions than the standard picture allows, 

and hence the sharing of neural resources at a much finer level of detail (i.e. in a vastly 

more promiscuous fashion) than previously acknowledged. Taken overall the evidence 

rather suggests that what we might initially think of as basic modular units could resolve 
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into still more basic domain-general (i.e. task-selective) elements, and that hitherto 

grossly specified functions such as vision and language cannot be located in functionally 

dedicated regions of the brain. The evidence is thus compatible with the deep 

interpenetration of higher level psychological functions, as distinct from merely their co-

option. 

 

 One of the core principles of neuroscience is the principle of functional 

localization, the idea that specific brain functions “can be mapped to local structure in a 

relatively straightforward way” (Anderson 2010, p. 245; Gold & Roskies 2008, p. 354). 

Modern neuroscience is largely predicated on the discovery of such structures and 

reckons success when a relatively discrete anatomical site can be correlated with some 

aspect of behaviour or function. Still it has never been entirely clear to what extent, or in 

just what way, this assumption can be justified. For one thing, some obvious questions 

immediately obtrude: “The main questions to be answered by any theory that claims that 

the mind consists of parts are Which parts? and Why those parts?” (Ohlsson 1994, p. 

724). Holding that mental functions fall along such axes as language, mathematics, 

physics, psychology, and so on, calls for a principled defence of this selection, but at times 

the choice seems a trite folksy, not to say arbitrary. Behind these questions lies the more 

specific issue of how any supposed carve-up might square with psychological data 

demonstrating the apparently interactive structure of many behaviours, even those as 

simple as reflexes (Amaral & Strick 2013, p. 337). How is a fact like supramodal 

organization, in virtue of which bilateral occipital cortices appear to be standardly 

redeployed in semantic language tasks, to be accounted for on the assumption that brain 

areas are highly specialized? At least one thing is abundantly clear: “functional 

differences…cannot be accounted for primarily by differences in which brain regions get 

utilized—as they are reused across domains” (Anderson 2010, p. 247). 

 

 Evidence of the “reuse,” “recycling,” or “redeployment” of brain areas is now 

extensive (Dehaene 2005; Anderson 2007a; 2007b; 2007c; 2008; 2010; 2014). These terms 

refer to the exaptation of established and relatively fixed neural circuits over the course of 

evolution or normal development, generally without loss of original function. “[R]ather 

than posit a functional architecture for the brain whereby individual regions are dedicated 

to large-scale cognitive domains like vision, audition, language and the like, neural reuse 



 34 

theories suggest that low-level neural circuits are used and reused for various purposes in 

different cognitive and task domains” (Anderson 2010, p. 246). Speaking of an 

increasingly familiar example of the reuse of an area once thought to be highly 

specialized, the neurolinguist David Poeppel remarks: 

 

A statement such as “Broca’s area underpins language production” (or “speech,” 
or “syntax,” or other broad categories of linguistic experience) is not just grossly 
underspecified, it is ultimately both misleading and incorrect. Broca’s region is 
not monolithic but instead is comprised of numerous subregions as specified by 
cytoarchitecture, immunocytochemistry, laminar properties, and so on. And 
domains of language such as “syntax” are similarly not monolithic but shorthand 
for complex suites of underlying representations and computations. It is perhaps 
not surprising that a brain area such as Broca’s region is therefore implicated in 
many functions, some of which are not even particularly tied to language. For 
example, in addition to language-specific functions such as syntactic processing or 
phonology…functional imaging studies have attributed to Broca’s area the 
processing of hierarchically organized motor actions as well as rhythm processing. 
While such functions are related to language processing in a broad sense, they 
apply to many other domains of cognition. Future work ought to focus on 
“decomposing” or fractionating such complex psychological functions into 
putative primitive operations to account for the wide range of phenomena that are 
mediated by anatomically complex brain structures such as Broca’s area. (2015, p. 
140) 

 

Language coarsely characterized as a gross function (or subfunction, e.g. 

recursion) appears to disarticulate into much finer functional granules whose 

computational resources are available both within and outside the domain of language. 

This is the essence of the theory of reuse: it explains overlapping neural activation with 

the suggestion that far smaller functional units with structured operations are used and 

reused across various task categories. Perhaps many statements that have now attained 

motherhood status—such as “Lining up objects does not form the basis of word order. 

Trying to fit one toy inside another has nothing to do with embedded clauses” 

(Karmiloff-Smith 1994, p. 698)—have in fact been premature. In what follows here and 

the next few chapters I shall certainly argue that this is so, inspired as I am by a 

commitment to the basic principle that intuitions about cognitive functions need always 

to be examined (and reexamined) in the light of what neuroscience actually reveals, even 

where this looks to be at odds with what comparative psychology or linguistics suggests 

about uniquely human, uniquely linguistic cognitive feats (see e.g. Chomsky 1965, pp. 

58-59). The comparative psychologist might well ask: “If word order is just object 
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discrimination and sequencing, and recursion some sort of applied folk physics, why is it 

that chimpanzees have nothing even approaching a human language system, though they 

manifest rich sensorimotor and representational abilities?” There is no shame in 

confessing that the answer here is by no means clear, which is no doubt why many 

continue to hold out hope that at the very least some aspects of language processing might 

not just be uniquely human, but also uniquely linguistic. One dares suggest that there 

might well be a small or even exiguous component of otherwise highly interpenetrated 

circuits that is rarely reused outside the language domain, and which would in 

consequence be specialized in a strict sense—a mechanism recruited for linguistic 

purposes and little else, dedicated in virtue not only of its isolable functional contribution 

and circumscribed circuitry, but also its dedication to a specific task category. Consider 

the possibility of a neuron or tightly restricted set of neurons being dedicated to, say, 

conjugating the verb “to be” and having no nonlinguistic functions at all (Prinz 2006). 

This component might aptly be described as a language “module” (or “minimodule”) for 

all practical purposes (see Chapter 4), and I shall consider its prospects in Chapter 7. 

 

For the present it suffices to remark that the evidence to which Poeppel refers in 

the extract cited earlier cannot be ignored either. The fusiform gyrus was rather wistfully 

hailed as the “face area” after the discovery that it responds to human faces suggested it 

might be a special purpose device (Kanwisher et al. 1997). It was later found that the area 

responds to other categories of objects for which it appears we have expertise, such as 

cars, birds and traveling objects (Gauthier et al. 2000). Even the more fundamental notion 

that ventral visual processing areas are specialized for shape discrimination has been 

called into question by evidence that information about many objects is distributed across 

the cortex, and that in some cases their identities can be recovered from low-level 

activation patterns across several occipital cortices (Haxby et al. 2001; Hanson et al. 

2004). I detail further evidence of neural reuse in § 3.3. For the moment we must turn to 

consider what is arguably the leading theoretical exposition of reuse attracting serious 

attention in cognitive science, neuroscience, and philosophy, Michael Anderson’s massive 

redeployment hypothesis. 
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3.2 THE MASSIVE REDEPLOYMENT HYPOTHESIS 

 

Neural reuse theories comprise what Anderson describes as “an emerging class of 

theories” which “taken together…offer a new research-guiding idealization of brain 

organization” (Anderson 2010, p. 246). Anderson’s own hypothesis builds on the 

assumption that evolution might prefer the reuse of neural circuitry over the development 

of new circuitry de novo (Anderson 2010, p. 246). On this assumption three predictions 

are thought to follow, the most obvious being neural reuse itself. “A typical brain region 

[should] support numerous cognitive functions in diverse task categories.” Second, older 

brain areas should ceteris paribus be reused more than newer ones, because “having been 

available for reuse for longer” they are more likely candidates for integration into recently 

evolved functions.1 Third, recently evolved functions should be more distributed than 

older ones since it should on the whole prove easier to utilize available circuits than to 

devise special purpose circuitry afresh, “and there is little reason to suppose that the 

useful elements will happen to reside in neighboring brain regions.” Conversely, “a more 

localist account of the evolution of the brain would…expect the continual development of 

new, largely dedicated neural circuits” for every cognitive innovation or significant 

increase in cognitive power. 

 

 Anderson has tested these predictions in a number of studies with conspicuous 

success (2007a; 2007c; 2008). For instance, the typical cortical region was found to be 

implicated in fully nine domains extending from action, vision and audition through 

language, mathematics, memory and reasoning. This illustrates an important feature of 

reuse, i.e. the possibility (in principle) of congruously overlapping regions—just the same 

circuits exapted for one purpose can be exapted for another provided sufficient 

intercircuit pathways exist to allow alternative arrangements of them. The same parts put 

together in different ways will yield different functional outcomes, just as “if one puts 

together the same parts in the same way one will get the same functional outcomes” 

(Anderson 2010, p. 247, my emphasis) (see Fig. 1). 

 

																																																								
1 The evolutionary psychologist’s invocation of so-called “debugging” concerns are addressed in § 5.1.  
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Regarding the second prediction that older areas are more likely to be reused than 

recently evolved regions, if we make the simplifying assumption that older areas lie at the 

back of the brain, Anderson’s results confirm the expectation. Anderson reports a 

negative correlation between the position of a brain region along the Y-axis in Tailarach 

space and the number of tasks that activate the region. (Tailarach space is the three-

dimensional human brain atlas used by neuroscientists for mapping locations in brain 

space—the correlation is counterintuitively reported as “negative” because in Tailarach 

space the origin is set at the centre of the brain with regions posterior measured in 

negative coordinates.) The results were replicated using different data sets, Anderson 

evaluating them in this vein: 

 

Although the amount of variance explained in these cases is not especially high, 
the findings are nevertheless striking, at least in part because a more traditional 
theory of functional topography would predict the opposite relation, if there were 
any relation at all. According to traditional theories, older areas—especially those 
visual areas at the back of the brain—are expected to be the most domain 
dedicated. But that is not what the results show. (2010, p. 247) 

 

As for the third prediction, that recently evolved functions ought to generate 

more distributed patterns of activation than older ones, Anderson’s (2007a) findings 

suggest that language could well be the paradigm, supported by more distributed 

activations than visual perception and attention and indeed any other domain that was 

tested (Anderson 2008). Results such as these showing widely scattered activations across 

Figure 1. Two cognitive functions 
indicated by solid and dashed 
lines, organized in the top figure 
the way that an anatomical account 
of modularity would predict, and 
in the bottom figure in accordance 
with how neural reuse sees the 
matter. Anatomical modularity 
maintains functional dissociability 
and localization for gross or high-
level functions with few if any 
overlapping units. Reuse suggests 
overlapping units that form 
different patterns of connection. 
Source: Anderson 2010, p. 247. 
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the brain for putatively late-developing functions are incidentally consistent with the 

degree of specialization for local circuits that neural reuse actually presupposes. For 

neural reuse is of course consistent with a certain kind of specialization; as the very word 

“redeployment” suggests, it presupposes the existence of comparatively fixed neural 

circuits whose functional contribution may be preserved across multiple task domains. 

The metabolic costs of maintaining long-distance connections would presumably 

encourage the reuse of local flexible (“poly-functional”) circuits, if any were around; 

“[t]hat this is not the observed pattern suggests that some functionally relevant aspect of 

local circuits is relatively fixed” (Anderson 2010, p. 247, but cf. Anderson 2014, pp. 15-

16, 104).2 Anderson’s earliest formulations of the redeployment hypothesis accounted for 

this fixity by introducing an important distinction, following Bergeron (2007; 2008), 

between stable low-level computational “workings” (or cortical “biases”) and diverse 

high-level cognitive “uses.” Workings are represented in the numbered units of Figure 1, 

above, while uses are represented by the functional composites formed from these units. 

Workings are really very tiny regions of cortex that make a specific computational 

contribution to higher-level cognitive tasks or “uses.” We might say that workings 

represent an essential functional contribution across all task categories, considered in 

isolation of neural context (although Anderson has since moved away from essentialism), 

and that uses are the high-level cognitive functions enabled by the composite of several 

workings. (More on this in Chapter 4.) 

 

Stable structure for local circuits is a feature of a closely related account of neural 

reuse, one which posits reuse or recycling as a developmental solution (in contrast to 

Anderson, for whom reuse is primarily an evolutionary solution). How are readily 

transmissible cultural practices whose phylogenetic emergence is too recent for 

evolutionary hardwiring to explain, such as reading and arithmetic, to be 

neurophysiologically accounted for? Early developmental neuroplasticity might be one 

way, but in supposing that local circuits might be too rigid for the effects of experience to 

overcome, Dehaene (2005) gives priority to “neuronal recycling.” 

 

																																																								
2 Scattered activations can be explained other than by the suggestion that local circuits are relatively fixed. I 
return to this issue in Chapter 5 (see § 5.1). 
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Of course neuroplasticity is not something either Dehaene nor Anderson would 

wish to deny. Dehaene goes as far as accepting (as I think one must) that novel uses which 

depart significantly from existing cortical biases cannot simply be exapted from them: a 

high-level use which places a significant cognitive burden on existing circuits, themselves 

better suited for other uses, must in the end disrupt those circuits and the alternative uses 

to which they might be put. More cognitively demanding functional acquisitions 

therefore require more neuroplasticity. This brings us to a potentially thorny issue. Just 

what is the relationship between reuse and plasticity? There might seem to be a tension 

between the fixity necessary to get reuse off the ground, on the one hand, and the 

plasticity necessary for reuse to play an interesting role in learning and evolutionary 

novelty, on the other. In fact there is no real problem here (Anderson & Finlay 2014). 

Anderson describes neural reuse as a change in use without a change in working, and 

plasticity as a change in use resulting from a change in working (Anderson 2010, p. 297). 

There is no real problem here because some forms of neuroplasticity (such as Hebbian 

synaptic plasticity) do not require flexible units before they can effect a change in use, 

given that they involve only adjustments to connection strength (“a change in use without 

a change in working”); besides that, neural units are not quite as “fixed” as Anderson’s 

own (2010) remarks suggest, allowing for more drastic forms of neuroplasticity (such as 

synaptogenesis and the like) to partly override the natural biases of particular brain 

regions (“a change in use from a change in working”). I revisit these themes in Chapter 6. 

 

It might be just as well to point out one other respect in which the story of neural 

reuse is compatible with the known biophysical constraints and possibilities of neural 

circuits. Neural reuse is really an ideal solution to what might be called the scaling 

problem (Zador 2015, p. 43; Bullmore & Sporns 2012, pp. 337-339). The scaling problem 

refers to the dilemma that as the number of neurons increases, undoubtedly conferring 

advantages in the form of increased behavioural flexibility and intelligence, the number of 

neurons that must be connected before such advantages can materialize grows 

quadratically larger. Thus in a small 10 neuron circuit, only 100 connections are required, 

but in a larger circuit consisting of perhaps 100 million neurons anywhere up to a 

thousand billion connections might be required. It is not easy to see, from the point of 

view of engineering and design, how an ever larger brain can be wired up efficiently when 

the number of neural connections required soon becomes immense. This consideration 
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has actually been played as an argument in favour of modularity, but it could just as well 

be pressed into the service of neural reuse, which delivers fixed low-level cognitive 

workings that operate autonomously in something like the way of traditional modules (see 

§ 5.1). 

 

3.3 FURTHER EVIDENCE OF NEURAL REUSE 

 

3.3.1 Computational modeling 

 

A number of large-scale computational models of the brain are currently being developed 

in the hope of understanding the activity of a million neurons or more. At their most 

sophisticated they leave behind the biologically unrealistic neural network models of the 

past and enter the domain of real brain simulation, neurorobotics and neuromorphic 

computing. As the computational analogues of real neural networks, they are beginning to 

offer fresh insights into the brain’s dynamic response properties. The primary advantage 

of brain simulation is that, “unlike the empirical brain, the model’s internal workings are 

completely known and the model’s structure can be modified in order to explore how its 

activity changes” (Sporns 2015, p. 97). One example of brain simulation that is especially 

relevant in the present context is Spaun (Semantic Pointer Architecture Unified 

Network). Spaun has a single eye through which it receives digital images as input, and a 

moving arm through which it provides behavioural output (Eliasmith 2015). What is 

interesting is that its 2.5 million neurons are organized to simulate about twenty of the 

roughly one thousand functionally distinct areas which neuroscientists typically identify 

in the brain (e.g. separate neurons for frontal cortex, basal ganglia, occipital cortex, etc.). 

One feature of Spaun that supports the theory of reuse comes as a result of this unique 

“modular” architecture: 

 

One key contribution of Spaun relative to many competing architectures is that 
Spaun can perform a variety of different behaviours, much like an actual brain. 
For example, Spaun can use its visual system to recognize numbers that it then 
organizes into a list and then stores in working memory. It can then later recall 
this list and draw the numbers, in order, using its arm. Furthermore, Spaun can 
use this same visual system to parse more complex input…To do so, it uses the 
same memory system, but in a slightly different way. As well, it uses other brain 
areas that it didn’t use in the list recall task. That is, Spaun can deploy the same 
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brain areas in different ways depending on what task it needs to perform. 
(Eliasmith 2015, p. 132, my emphasis) 

 

Spaun’s differentiated circuits manifest the very same interactive dynamics which reuse 

posits of real brains: “different, specialized brain areas are coordinated in a task-specific—

that is, flexible—way to meet a challenge presented by the environment” (Eliasmith 2015, 

p. 132). This behavioural flexibility marks a distinctive sense in which neural reuse is a 

form of plasticity: the ability to switch effortlessly from task to task (reading an email, 

playing a piano, chasing a dog) using the same brain areas in different ways and with little 

or no delay in shuffling between them. This kind of plasticity serves to set biological 

intelligence apart from most contemporary artificial intelligence, and indeed explains why 

Spaun is “atypical of the field” overall (Eliasmith 2015, p. 134). Most machines are good 

at doing one specific thing (playing chess, solving mathematical equations, driving a car, 

etc.). Spaun is unique both in the variety of tasks it can perform and its capacity to learn 

new behaviours independently “while preserving abilities it already has” (Eliasmith 2015, 

p. 134). Spaun may be one of the first tentative steps towards showing that a domain-

general learning system can work.3 

 

3.3.2 Biobehavioural evidence 

 

Casasanto and Dijkstra (2010) report an interesting association between autobiographical 

memory and motor control. The task involved shifting marbles upward or downward 

from one container to another while relating memories having either positive or negative 

valence. Subjects were asked to retell for example a negative memory, followed by 

another negative memory, then perhaps a positive memory, while simultaneously moving 

marbles from one container to another in a given direction. It was found that subjects 

retrieved more memories, and moved the marbles more quickly, when the direction of 

movement aligned with the valance of the memory, i.e. when the upward movement 

coincided with positive memories, and the downward movement with negative memories. 

Even when subjects were not asked to relate memories that were specifically positive or 

negative, but just to relate memories as they came, they were more likely to retrieve 

memories whose valence correlated with the direction of movement. The directedness of 

																																																								
3 Google scientists have just pulled off something similar with Agent (Mnih et al. 2015). 
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the movements involved suggests an important association between memory, movement 

and spatial orientation likely to be reflected in shared neural circuitry. 

 

 The reuse of spatio-visual circuits for numerical cognition is illustrated by the 

spatial-numerical association of response codes (“SNARC”) effect. Here are just two 

examples of the SNARC effect (Dehaene et al. 1993): (i) when asked whether a number is 

even or odd, subjects respond more quickly with large numbers displayed to their right, 

or small numbers to their left; (ii) when presented with a line of neutral symbols (e.g. 

XXXXX) subjects fare better at correctly indicating the midpoint than when presented 

with small numbers (e.g. 22222), in which case there is a bias to the left, or large numbers 

(e.g. 99999), where the bias is to the right. It appears that in these cases a mental number 

line running from left to right is being navigated with the help of spatial orientation 

circuits (Hubbard et al. 2005). 

 

 A growing body of literature within social psychology also supports the case for 

reuse. These findings corroborate the influence of physical sensations and relations such 

as heat, distance and texture on higher-order processes involved in social cognition 

(Williams & Bargh 2008a). Holding a cup of hot as opposed to iced coffee influences the 

impressions formed of a target person even when identical information about the target is 

given. Those with warm cups gave generally more positive assessments of the target than 

those holding iced coffee. In a follow-up study, “those in the warm-coffee condition were 

more likely to give their compensation for being in the experiment to a friend (in the form 

of a gift certificate), whereas those in the cold-coffee condition were more likely to keep it 

for themselves” (Bargh et al. 2010, pp. 267-268). Here we see experiences of physical 

warmth directly influencing perceptions of interpersonal warmth. Likewise physical 

distance appears to influence feelings of emotional distance and isolation (Williams & 

Bargh 2008b). Ackerman et al. (2010) reported cases demonstrating that texture and 

weight can affect psychological variables. When a human relations officer holds a heavier 

clipboard during a job evaluation, she is disposed to think of the job candidate as more 

serious, and overall takes the HR role more seriously. Similarly, negotiation tasks in 

which the participants are seated on hardwood as opposed to cushioned chairs induce less 

amenability and bargaining flexibility. All these physical-to-psychological effects are at 
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the very least consistent with extensive shared neural circuitry, just as reuse would 

predict. 

 

3.3.3 Final thoughts 

 

Despite the extensive and compelling nature of the evidence supporting reuse, not to 

mention again the powerful evolutionary considerations in its favour, the case has not yet 

managed to convince everyone. Neural activation and imaging evidence on its own is 

ambiguous, the skeptics point out, being consistent with multiple neighbouring sets of 

neurons that only appear to be reused as a result of the coarse spatial resolution of 

contemporary imaging technologies (Anderson 2010, pp. 298-299; 2014, p. 29). 

Furthermore 

 

…because neural activation may spread around the brain network, this can lead to 
false positives: regions that are activated only as a side effect of their connectivity 
and not because they are making a functional contribution to the task under 
investigation. (Anderson 2014, p. 29) 

 

This “spreading activation” is what Colin Klein (2010, p. 280) has dubbed a “potential 

confound,” and such worries cannot be lightly dismissed. On the contrary, misgivings 

about the use of neuroimaging evidence are precisely why converging biobehavioural 

evidence (of the kind just cited) will be critical in a debate like this. The more 

biobehavioural evidence of functional and semantic inheritance between task domains, the 

greater our confidence that the very same neural structures are involved (Anderson 2014, 

p. 30). The limitations of neuroimaging technology can thus be overcome by adopting 

supplementary research paradigms. An interference paradigm, for example, asks 

participants to process two stimuli at the same time. If the processing of these stimuli 

draws on shared neural resources, one would expect this to be reflected in performance: 

perhaps a slower reaction time as compared to performance on similar tasks that do not 

make processing demands on the same neural elements. Thus on the assumption that the 

fusiform face area would respond to objects of expertise as well as faces, Gauthier et al. 

(2003) predicted that face processing in car experts would be impeded by the presentation 

of cars at the same time—and this is just what they found. Here we have evidence of 

reuse coming from a research paradigm outside neuroimaging, and none the worse for 

that. Later on I cite yet a further type of evidence, this time from single-neuron studies, 
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demonstrating that while concerns over poor spatial resolution and spreading activation 

may be legitimate, they can hardly be decisive (see the discussion of “strong context 

effects” in  § 5.1). The simple fact of the matter is that evidence in support of reuse comes 

from many quarters, including from disciplines—such as neurology and 

neuropsychology—in which distributed parallel processing models, important precursors 

to reuse inasmuch as reuse presupposes them, had been proposed well before the advent 

of neuroimaging technology: 

 

One of the earliest and longest running debates in neuropsychology concerned the 
question of whether functions of the cerebral cortex are localized in circumscribed 
areas or are equally represented throughout the entire cortex. Resolution of this 
controversy…slowly came about with the realization that cortical areas do 
perform unique elementary functions, but that complex functions require the 
integrated action of many areas distributed throughout both cerebral hemispheres. 
According to this view, a complex function is a system of interrelated 
processes…implemented neurally by a complementary system, or network, of 
functionally related cortical areas. (Bressler 1995, p. 289, my emphasis) 

 

Still, even assuming that the general thrust of this hypothesis is correct (as I for one do), 

it is not immediately obvious that anatomical modularity is dead, for perhaps it is only in 

respect of its functional scope that it stands in need of revision (much as Bressler implies 

in the quotation). Moreover, as I suggested earlier in this chapter, outstanding questions 

concerning the existence of a dedicated language module remain as acute as ever, and 

these are tied in part to an extensive dissociation literature as well as to the concerns over 

spatial resolution and neuroimaging I just raised. I turn now to consider these issues, and 

begin by inquiring into just what the implications of reuse and neuroplasticity might be 

for the modularity of mind. 

 

3.4 SUMMARY 

 

Neural reuse refers to the exaptation of established and relatively fixed neural circuits 

without loss of original function/use. Reuse arises over the course of normal development 

and evolution. The evidence of this phenomenon speaks most loudly against the idea of 

strict domain specificity. It seems that no area of the brain is exempt from redeployment, 

with areas of the brain traditionally considered to be among the most domain-specific 

(such as sensory areas) also contributing their computational/structural resources to other 
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domains, including those involving language. The evidence supporting reuse takes many 

forms, among them evolutionary and developmental considerations, computational 

considerations, and the neuroimaging and biobehavioural literature. 
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4 
_____ 

 

Modules reconsidered: Varieties of modularity 
 

 

 

 

 

 

4.1 A PIVOT TO THE NEUROSCIENCES 

 

Evidence of neural reuse points to an overall picture of the brain that has disruptive 

implications for the modularity of mind, particularly for classical varieties of the theory 

such as Fodor’s, massive modularity and ACT-R which all posit modules for high-level 

cognitive functions or proprietary domains. No doubt many will resist this assessment. I 

certainly have sympathy with the tradition of functional decomposition, and shall not in 

any case be recommending that we dispense with modules here. Nonetheless such 

evidence of reuse as we have clearly does point to “the need for a supplement to business 

as usual” (Anderson 2010, p. 249). 

 

 The central problem for modularity, at least as it has traditionally been 

understood, is that modules talk lends itself most naturally to the analogy of bricks and 

mortar, or the assembly of component parts. As an intricately dense network of synaptic 

connections, electrical signals and neuromodulatory dynamics, however, the brain is 

nowhere obviously organized in this bricks and mortar sort of way, even where it 

sometimes proves fruitful to account for neurobiological function in mechanistic 

compositional terms (Craver 2007; Bechtel 2008b). The question is whether the bricks 

and mortar analogy is so far superseded by the network analogy that there is no longer 

any residual value in speaking of modules at all. If the brain is not obviously or even 

predominantly an assembly of functional components, surely it would not be 
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unreasonable to hope that any theory having as its target the mind’s functional 

organization would adequately accommodate itself to this fact. 

 

 The brain’s network structure notwithstanding, metaphors, it seems, die hard, 

especially ones freighted with as much philosophical baggage as modularity. It may be 

that metaphors are all we have, but if so we are going to need the right ones. To those 

reluctant to give up on the modular perspective I hope my own recommendation of a 

substantial yet cautious reform may offer some consolation. My proposal is simple—that 

we recalibrate our notion of modules in deference to what currently passes for a module 

in contemporary mainstream neuroscience. Cognitive scientists and philosophers whose 

work is attentive to the neurosciences already think in these terms, and it is not hard to 

appreciate why: when it comes to modularity, which concerns the functional organization 

of the mind, psychological theorizing is even more constrained by issues of 

implementation than might generally be the case. For some reason, however, many 

philosophers continue to talk about modules in a manner conveying either ignorance of 

what neuroscience has to say about the structure of the brain or else a breezy indifference. 

A reorientation towards neuroscience entails a shift of focus away from understanding 

modules as unimodal high-level cognitive mechanisms towards a conception of modules 

as metamodal (i.e. reusable) nodes subserving exiguous low-level subfunctions. I argue 

that a module built on this pattern, sometimes called a “brain module,” can serve as an 

appropriate revisionary benchmark for cognitive scientists and philosophers of 

psychology still wedded to the idea of classical modules. Notice, however, that this 

proposal also entails a certain agnosticism regarding the prospects of modularity in the 

long run. Being sensitive to developments in the neurosciences means being willing to 

part with long-cherished notions if needs be. It so happens that further evidence of neural 

reuse presented in the next chapter may necessitate a more profound shift away from 

traditional modules than the one I am currently recommending. Hence I am urging a 

recalibration in the face of developments which will either, if all goes well, allow us to 

safeguard a respectable (though revised) notion of modularity, or, should things not turn 

out so well, undermine its rationale comprehensively—this is where the real battlelines 

are being drawn. Later on I shall suggest one way that we might usefully conceptualize 

the issues presented by these developments. Still the broader point remains: if modules 
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exist at all—a question on which it pays not to be dogmatic one way or the other—they 

will not resemble the modules of classical cognitive science. 

 

 In the next section I provide a rough sketch of the varieties of modularity one 

might expect to come across in the cognitive sciences. In this section I also defend what I 

take to be the sine qua non of modularity, namely, functional dissociability. This will be 

important in heading off an obvious objection to the argument I am making here: that 

modules can always survive qua abstract, high-level functional “systems.” I follow this 

section with a basic account of the brain module. The next chapter pursues at greater 

length the central question of this thesis—whither modularity?—in the hope of 

demonstrating why neural reuse points us in the direction of something like the brain 

module. 

 

4.2 VARIETIES OF MODULARITY 

 

4.2.1 Themes and trends 

 

The nineteenth century phrenologists were probably the first to emphasize the 

specialization of brain functions. Gall and Spurzheim (1835) hypothesized “about thirty-

five affective and intellectual faculties” localized in distinct regions of the brain. As almost 

everyone knows, however, they got the details horribly wrong, for they fallaciously 

assumed that the activity of a cortical faculty would be reflected in its size, and that its 

size in turn would be reflected in the relative prominence of cranial bumps. This led them 

to endorse the pseudoscientific practice of gauging personality from the shape of a 

person’s skull. Wrong though they most assuredly were in this respect, the idea that brain 

function can be mapped to local structure was not itself a bad idea. It soon received 

empirical support in the work of the neurologists Gustav Fritsch, Eduard Hitzig, Paul 

Broca and Carl Wernicke—Broca and Wernicke being of course the first to discover the 

so-called “language” areas of the brain (Bridgeman 2010). Indeed by the end of the 

nineteenth century, the idea was well on its way to becoming the equipment of every 

working scientist in the field. In fact “the notion of cognitive function being subdivided 

and routed to different regions of the brain has remained a central idea in neural science 
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and a fundamental principle in the clinical practice of neurology” (Pascual-Leone & 

Hamilton 2001, p. 431). 

 

 Corresponding to a rough division between mind and brain, one may trace the 

course of two distinct but parallel traditions originating in the work of these nineteenth 

century neurologists. The first is a structuralist tradition whose methodology, guiding 

assumptions and theoretical concerns are predominantly biological (i.e. neurological and 

anatomical). From a certain point of view, Fodor’s archetype could be said to fall broadly 

within this tradition—notwithstanding the subordinate and strictly dispensable role 

played by structural properties in his overall account (Anderson & Finlay 2014, p. 5; 

Fodor 1983, pp. 71, 98-99; Coltheart 1999)—as may both the neural network graph-

theoretic module (see § 4.2.2) and neuroscience “brain module” (see § 4.3), which I come 

to shortly. 

 

An alternative approach investigates questions of cognitive architecture from the 

standpoint of a classic computationalist or functionalist. In the guise of evolutionary 

psychology or “massive modularity,” for example, it “retains the Fodorian focus on 

computation, and with it a focus on the algorithmic (or heuristic) efficiency of purported 

psychological solutions to adaptive problems such as food choice, mate selection, kin 

identification and cheater detection” (Anderson & Finlay 2014, p. 5). It does not, 

however, entail specific commitments about implementation beyond those required for 

functional independence.1 (See Sternberg 2011, pp. 158-159 for an overview.) 

 

These two (ideally) complementary approaches to the mind/brain are reflected 

again in the central assumptions underpinning much of the effort within 

neuropsychology, cognitive neuropsychology and cognitive neuroscience (Bergeron 

2007). Bergeron calls these the “anatomical modularity assumption” and the “functional 

modularity assumption.” Recall that in Chapter 1 we provided a general definition of an 

																																																								
1 Defenders of massive modularity also part company with Fodor’s “central”/“peripheral” distinction. 
Fodor’s hypothesis is that only peripheral systems are likely to be modular “to some interesting extent” 
(1983, p. 37), i.e. sensory input and motor systems. Proponents of massive modularity think that the central 
systems will be modular too, i.e. those involved in higher perceptual function, belief-fixation and inferential 
reasoning (Sperber 1994; 2002; Carruthers 2006; see also Barrett & Kurzban 2006 and Prinz 2006 for 
reviews). 
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anatomical module. It is worthwhile restating this definition in such a way as to reveal 

more clearly its relation to a “functional” module. The functional modularity assumption 

 

is the idea that the architecture of human cognition largely consists in a 
configuration of cognitive modules, where a “module” is roughly defined, 
following Jerry Fodor (1983), as a domain specific, innately specified, and 
informationally encapsulated system....What this means is that human cognition 
can be decomposed into a number of functionally independent processes, and that 
each of these processes operates over a distinct domain of cognitive information. 
Moreover, since these processes are brain processes, to hypothesize that the 
capacity to do A and B depends on two distinct cognitive modules—one 
responsible for the capacity to do A and the other responsible for the capacity to 
do B—is to hypothesize that the brain processes cognitive information related to 
A separately from the way it processes cognitive information related to B…. 
 
What makes the A module/process distinct from the B module/process is their 
functional independence, the fact that one can be affected, in part or in totality, 
without the other being affected, and vice versa. (Bergeron 2007, pp. 175-176) 

 

The anatomical modularity assumption, then, 

 

is the idea that the cognitive modules which compose cognition (or at least most of 
them) each reside in some specific and relatively small portion of the brain….The 
anatomical modularity assumption is in fact the functional modularity assumption 
plus a claim about the implementation of functionally modular processes in the 
brain. (Bergeron 2007, p. 176, my emphasis) 

 

Stripped to their essentials, functional modularity implies functional dissociability, while 

anatomical modularity implies both functional dissociability and neural localization. As I 

argue below, functional dissociability—functional modularity pure and simple—

represents the essence of any modular account worthy of the name. 

 

What I have so far failed to mention, though it will in fact be crucial to 

appreciating the implications of neural reuse, is that cognitive modules have been 

generally postulated to account for higher level or gross cognitive functions, i.e. for the 

sorts of psychological capacities that might appear in the ontologies of cognitive 

psychology. Even if one restricts one’s gaze to the history of the structuralist/neurological 

tradition, one will not be surprised to learn that, in the main, the project of mapping 

function to structure has proceeded with a fairly coarse taxonomy of psychological 

capacities in hand. The phrenologists, for their part, merely translated the categories of 
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Thomas Reid’s faculty psychology onto a plan of the skull (acquisitiveness, friendship, 

sagacity, cautiousness, veneration, etc.) (Poldrack 2010, p. 753). Broca’s postulation of a 

“language” area associated with motor aphasia, though no doubt empirically better 

supported than Gall and Spurzheim’s assumptions, hardly served to sharpen the focus on 

what the brain itself is actually doing when facilitating speech; for “what warrants the 

thought that [such] characteristics [as those found in faculty psychology] will be useful to 

structuring the neuroscience of behaviour and divide the brain at its functional joints?” 

(Anderson 2014, p. xvi). Consider Russell Poldrack’s illuminating reductio ad absurdum 

(cited in Anderson 2014): 

 

Imagine that fMRI had been invented in the late 1860s rather than the 1990s. 
Instead of being based on modern cognitive psychology, neuroimaging would 
instead be based on the faculty psychology of Thomas Reid and Dugald Steward, 
which provided the mental “faculties” that Gall and the phrenologists attempted 
to map onto the brain. Researchers would…almost certainly have found brain 
regions that were reliably engaged when a particular faculty was engaged, …[and] 
Gall and his contemporaries would have taken those neuroimaging results as 
evidence for the biological reality of his proposed faculties. (Poldrack 2010, p. 
753) 

 

What reasons have we for imagining that the taxonomies of modern day psychology will 

fare any better in carving the brain at its true functional joints? Clinical evidence of 

dissociations aside (about which I shall have more to say later), widespread evidence of 

neural reuse strongly suggests that attempts which seek to impose upon the brain a set of 

categories devised (largely) autonomously of the brain, and moulded from a wholly 

different set of considerations from those guiding brain science generally, are doomed to 

repeat the same basic phrenological mistake. What is needed is “the development of 

ontologies that let the phenomena speak on something closer to their own terms” 

(Anderson 2014, p. xvii). 

 

 The structuralist tradition in fact does admit of some exceptions to this 

questionable trend in what might even be seen by some as a clear premonition of neural 

reuse theories. As Bergeron’s (2007) helpful discussion reminds us, Carl Wernicke’s 

postulation of a sensory speech area, often wrongly dubbed the “language comprehension 

area,” obscures the fact that Wernicke himself was “very resistant to postulating any 

cerebral centers beyond what he referred to as the ‘primary’ (motor and perceptual) 
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‘psychic functions’ ” (2007, p. 184). Wernicke could well be credited with the elaboration 

of an entirely original approach to the structure-function relation in the brain. On this 

approach, only the sensory and motor functions are allocated distinct and dedicated 

neural anatomy. Higher psychological functions such as those implicated in language 

production and comprehension are supposed to depend on the interactions of these low-

level sensory-motor systems. This arguably anticipates modern theories of reuse which 

predict that higher cognitive functions resolve in the interactions of lower level elements. 

Bergeron certainly thinks so, and even suggests that Wernicke must have been operating 

with an implicit understanding of the difference between a cognitive working and a 

cognitive use, the distinction which, as we saw in Chapter 3, Anderson made central to 

his original presentation of the massive redeployment hypothesis. If Bergeron’s 

conjecture is correct, Wernicke’s great methodological innovation—what set him apart 

from the phrenologists and even his predecessor Paul Broca, for example—consisted in 

his cautious reluctance to infer cognitive working (i.e. essential functional contribution 

across all task categories, considered in isolation of neural context) from cognitive use (i.e. 

high-level cognitive function), an inference obviously susceptible to Poldrack’s reductio. 

 

 In the same vein, the father of modern neuroscience and champion of the neuron 

doctrine, Santiago Ramón y Cajal, “was decidedly not a supporter of either the definition 

of psychological ‘faculties’ or their assignment to discrete, localized neural ‘organs’ ” 

(Anderson 2014, p. xv): 

 

In [his] view, brain function is to be understood in terms of a hierarchy of 
reflexes, in the most sophisticated instances of which one responds not just to 
external but also to internal, and not just to current but also to stored stimuli….In 
such a brain there can be no region for circumspection or poetic talent, for 
although a particular sensory experience or association may be stored in a 
particular place…the behavioral characteristics of the organism are realized only 
by the fluid activity of the whole system in its environment. (Anderson 2014, p. 
xv-xvi) 

 

The idea that specific circuits could be cued by various stimuli across both internal and 

external environments is a tolerably clear presage of the metamodal hypothesis of brain 

organization which we encountered briefly in Chapter 2 and underwrites the possibility of 

neural reuse. (I revisit the metamodal hypothesis in more detail in the next chapter, as it 

bears greatly on the questions facing us there.) 
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4.2.2 Graph theory and network neuroscience 

 

There is another usage of the term “module” that one often comes across in the literature. 

It is perhaps testament to the immense versatility of modularity that it has descriptive 

utility well beyond the confines of cognitive science. Modules play an important role in 

fields as diverse as developmental and systems biology, ecology, mathematics, computer 

science, robotics and industrial design. One interesting application of the term occurs in 

the study of networks, and neural networks in particular. Unfortunately, there is a danger 

of confusion here, because the network concept is significantly looser than the classical 

one in cognitive science. Thus it sometimes happens that different researchers, all of 

whom work in the cognitive sciences broadly speaking (including brain science), refer to 

“modularity” but mean different things by it. 

 

A network is any organization with a weblike structure. The Internet, airline 

routes, food webs and electrical grids spring immediately to mind, but these are only the 

most obvious examples among a great variety of phenomena displaying network design, 

including genetic regulation and protein interaction (Bullmore & Sporns 2012; Caldarelli 

& Catanzaro 2012, pp. 23-25). Networks manifest a number of important universal 

properties (Caldarelli & Catanzaro 2012, pp. 4-5). At the most elementary level, all 

networks comprise a collection of nodes (or “vertices”) and the various connections (or 

“edges”) between them (see Fig. 1). In a map of airline routes, for example, a single 

airport would be represented by a node and the route between any two of them by an 

edge. Because the focus of attention is the global structure of interactions between nodes, 

rather than the individual nodes themselves, the basic representational vehicle can be the 

same in every case, namely a graph depicting nothing more than these nodes and their all-

important interconnections (Caldarelli & Catanzaro 2012, pp. 4, 12; Anderson 2014, p. 

12). In graph theory, a “module” is defined as a community of “densely interconnected 

nodes” where “the existence of several [such] communities is characteristic of [a] modular 

[network]” (Bullmore & Sporns 2012, p. 342; Caldarelli & Catanzaro 2012, pp. 89-90) 

(Fig. 1). In network neuroscience specifically, network models take the form of neural 

coactivation graphs, where modules are identified as communities of nodes that are 

functionally coactive (see below). In the context of neural networks, then, “modularity 
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refers to the existence of multiple communities of neurons or brain regions as defined by 

patterns of [functional] connectivity” (Bullmore & Sporns 2012, p. 342). 

 

   

 

The point is explained very simply by Caldarelli & Catanzaro in connection with 

the importance of functional magnetic resonance imaging (fMRI): 

 

When humans perform an action, even one as simple as blinking, a storm of 
electrical signals from the neurons breaks out in several areas of the brain. These 
regions can be identified through techniques such as functional magnetic 
resonance. Through this technique, scientists have discovered that different areas 
emit correlated signals. That is, they show a special synchronization that suggests 
that they may influence each other. (Caldarelli & Catanzaro 2012, p. 27)  
 

Furthermore 

 

These areas can be taken as nodes and an edge is drawn between two of them if 
there is a sufficient level of correlation. Also at this level, the brain appears as a set 
of connected elements [i.e. “modules”]. Each action of a person lights up a 
network of connected areas in the brain. (Caldarelli & Catanzaro 2012, p. 27) 

 

That is, the neuroimaging data resulting from a functional connectivity analysis can be 

represented as a graph—a neural coactivation graph—in which nodes represent 

individual brain regions and edges denote the likelihood of coactivation between two 

nodes during a particular task (Anderson 2014, p. 12) (see Fig. 2). 

 

Why should this prove instructive for cognitive architecture? It turns out that the 

abstract topological features of these neural coactivation graphs frequently (if only 

roughly) track the functional taxonomies of cognitive psychology, cognitive 

neuropsychology and the computationalist/functionalist tradition more generally 

Figure 1. Nodes, edges, modules 
and hubs in a network. Nodes are 
sometimes also called vertices. 
Source: Bullmore & Sporns 2012, 
p. 342. 



 55 

(Anderson 2010, p. 303; 2014, p. 42). This sense of the word “module” therefore seems as 

if it might have a natural affinity with the modules to which philosophers of psychology 

have become accustomed. But closer inspection shows this to be a tentative link at best. 

 

 
Figure 2. Each community of nodes forms a module that tracks a higher level cognitive function such as 
attention or semantics. Source: Anderson 2016, p. 4. 
 

Firstly, being in effect sets of reusable (i.e. domain-general/task-selective) nodes, 

these graph-theoretic modules are not your typical dissociable ones (although see Pessoa 

2016 for discussion); nor, for that matter, are they intended to track encapsulation, 
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domain specificity, automaticity or the half dozen other features typically ascribed to 

modules within the computationalist tradition (Stanley & De Brigard 2016). Quite 

simply the usage here is sui generis. Secondly, while there no doubt is a standard and 

more orthodox usage of the term “module” in neuroscience (one which moreover does 

offer some support to the classical conception from cognitive science, as I discuss later), 

its meaning is in fact much closer to what is represented by the nodes of a coactivation 

graph than by the communities of nodes in such a graph (see e.g. Pascual-Leone & 

Hamilton 2001, p. 443; Pascual-Leone et al. 2005, p. 396; Caldarelli & Catanzaro 2012, p. 

27; Fedorenko & Thompson-Schill 2014, p. 120, 121; Zador 2015, p. 44). That is, the 

standard sense of “module” in neuroscience trails far more closely the idea of small 

individual brain regions with discrete subfunctional profiles than it does the idea of high-

level functional composites. The anomaly results from the fact that network techniques 

were developed independently of neuroscience, and with a distinctive usage and 

vocabulary. When network methods were eventually adopted by neuroscientists, an 

idiosyncratic usage was introduced into a discipline that already had a fairly settled 

meaning for the term “module.” In neuroscience, “module” typically refers to a cortical 

column (akin to a node in the coactivation graphs above), and this, as we shall see further 

in §§ 4.3 and 5.1, is a twentieth century refinement of the anatomical module within the 

structuralist tradition. 

 

4.2.3 Separate modifiability as the touchstone of modularity2 

 

A common objection to accounts of cognitive architecture which downplay or question 

the modular hypothesis is that modularity has not been given due credit for the uniquely 

versatile concept that it is, and that the dissenters have simply fettered themselves with an 

impossibly narrow and needlessly structuralist conception of cognitive architecture that is 

unwarranted in all the circumstances (the circumstances being the Cognitive Revolution, 

the fact that no one seriously denies that the mind has a rich internal structure, the 

unquestionable boon of functional decomposition as an effective research strategy in the 

cognitive sciences, etc.). Jungé and Dennett (2010, p. 278) appear sympathetic to this 

point of view: “A software theory of massive modularity—programs evolved to serve 

particular adaptive functions within brains—without commitments about implementation 

																																																								
2 Material from this section appears in the journal Philosophical Psychology (see Zerilli 2017a). 
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(unlike anatomical modularity) could survive [the evidence of neural reuse] largely 

untouched.” At issue here is whether a nondissociable system of some variety could be 

regarded as modular—whether, say, a language or norm acquisition device comprised of 

very many smaller domain-general neural regions could in some sense be a module.3 

Against this suggestion is the claim that functional dissociability ought to fix a definite 

threshold beneath which a system cannot be regarded as modular. Here I shall contend 

for the latter view. 

 

 Recent developments in neuroscience have no doubt added to the lustre of the 

“system” module, as I shall call it, and even encouraged the view that such modules 

represent what was always the most important contribution of modular theories to our 

understanding of the mind (see below). But actually the system module has been around 

for a long time. Its fortunes can nowhere be more illuminatingly charted than in the 

annals of generative grammar. Generative grammarians are notorious for prevaricating on 

the issue of linguistic modularity—one can easily locate passages which would suggest the 

modularity in question is anatomical or at the very least functional (Chomsky 1975, pp. 

40-41; 1980a, pp. 39, 44; 1988, p. 159; 2002, pp. 84-86; Pinker & Jackendoff 2005, p. 207; 

Fitch et al. 2005, p. 182; Collins 2008, p. 155) and others where what they seem to have in 

mind is little more than a “domain of inquiry”—“[t]he view that internal cognitive 

systems can fruitfully (for purposes of successful theory-construction) be studied 

independently of other such systems” (McGilvray 2014, p. 235; Chomsky 2005, p. 5). 

Notice that the module-as-domain-of-inquiry very effectively neutralizes the sting of 

neuroscientific evidence, since there is really no evidence that neuroscientists can adduce 

against the existence of such a module (a point to which I return below). Indeed the 

system module is frequently endorsed by playing down the significance of 

implementation and emphasizing its “methodological value as a research heuristic” 

(Badcock et al. 2016, p. 11; see also Scholl 1997). But let us return to the other theme of 

this section, the notion of dissociability. 

 

In a straightforward sense, a system is dissociable if it is functionally specialized—

if it can (in principle) be modified without directly impeding the operation of a 

																																																								
3 In § 5.2 I consider whether it is possible for systems consisting of shared domain-general parts to be 
functionally dissociable. This is the same as asking whether high-level cognitive functions could persist as 
functional modules. For now we can assume the answer is no. 



 58 

comparable system.4 More precisely, if a neural system n consisting of neural primitives 

{p1, p2, p3 … pn} contributes some specific and functionally discrete operation f such that 

all (or most) elements of the set {p1, p2, p3 … pn} are dedicated to f, n will be dissociable. 

On this understanding, a speech production centre will be dissociable if its impairment 

has no direct effect on any system “considered with the same grain of analysis” 

(Carruthers 2008, p. 295) (e.g. numeracy, rhythm, speech comprehension, episodic 

memory, IQ, etc.) even though it might ramify to compromise a higher level functional 

system that draws upon the speech production centre for processing (e.g. singing, 

signing, etc.). In the context of neural reuse, we may presume that a working’s 

impairment will ramify to all higher level functional composites in which it plays an active 

role; and yet so long as no other working is directly put out by such an intervention, the 

working remains sufficiently discrete to be regarded as dissociable. (Whether brain 

regions as small as workings are truly dissociable in this sense is another question. I take it 

up in Chapter 5.) 

 

Notice that when spelled out in this way—and all I have done is follow through 

with the logic of dissociability as it is commonly understood (see e.g. Carruthers 2008, p. 

258; Coltheart 2011, pp. 227-228)—the requirement could be thought to lose much of its 

explanatory power. For what it entails is that the smaller and more functionally 

promiscuous a neural system gets—remembering that neural reuse itself implies that the 

typical brain region will be both extremely small and highly versatile—the more difficult 

to quarantine the effects of regional impairment, since those effects will presumably 

ramify to all affected distributed systems. An evolutionary psychologist might allege that 

nothing theoretically significant can follow from the fact that a tiny brain region is 

dissociable if its impairment will disturb the operation of many higher level cognitive 

systems. It is only when modules directly implement high-level cognitive functions (e.g. 

sentence parsing, cheater detection, face recognition and the like) that the effects of 

modification can be contained in a way that makes dissociability an important constraint 

on cognitive theory. For then evolution itself can have a clear role to play in shaping 

cognitive systems by selectively modifying brain regions in a way that does not 

reverberate detrimentally across distributed systems. This indeed was thought to be a 

																																																								
4 Its modification may of course indirectly impede a comparable “downstream” system, i.e. one at the 
receiving end of its efferent projections. 
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major argument in favour of modularity—the neat solution it offered to the so-called 

evolutionary “debugging” problem (Cosmides & Tooby 1994). By contrast any account of 

modularity in which modules come out as small and promiscuous is an account of 

modularity which no longer promises to solve the debugging problem. And (it may be 

alleged) any criterion of modularity which casts modules in such a diminutive role cannot 

be considered especially salient. 

 

Now I am defending dissociability as a criterion of modularity. My position must 

therefore seem a little curious, for am I not by defending dissociability actually defending 

the wrong sorts of modules—given the sorts of modules that this criterion delivers if the 

redeployment hypothesis is correct? I can certainly see how an evolutionary psychologist 

would be puzzled by my position. But, as I shall explain later, I do not think the 

evolutionary psychologist’s reasoning here is persuasive—frankly, the sorts of modules 

she is after are very unlikely to be found anywhere beyond the most primitive domains, 

and the search for them at all reflects a misunderstanding of the brain and its evolution: 

the debugging problem is not a deep one. Like it or not, therefore, it looks as if we are 

going to have to rest content with a diminutive role for modules—which may not be such 

a bad thing anyway. For while dissociability may not ultimately meet the desiderata for a 

theory of evolutionary psychology, it ought to safeguard a respectable threshold for 

modularity nonetheless. It furnishes a kind of cognitive movable type for the mind, and 

mechanisms that can support robust laws, generalizations and predictions (e.g. “forward” 

inferences from cognitive tasks to brain areas) (Burnston 2016). If 

 

For a given neural area A, there is some univocal description D, such that D 
explains the functional role of A’s activity whenever A functions 

 

it should be possible to formulate a theory tokening A providing “functional descriptions 

that apply over a range of instances of functioning,” and “functional explanations in 

particular contexts that are relevant to contexts not yet explored” (Burnston 2016, pp. 

529, 531). This would be a “very powerful theor[y] in terms of generalizability and 

projectability” (Burnston 2016, p. 531).5 

																																																								
5 Brain regions that are domain-general in the way envisaged by theories of neural reuse may of course 
ultimately prove not to sustain completely generalizable and projectable accounts of local function. The 
ability of a brain region to maintain a set of stable input-output functions, and hence to be truly dissociable, 
may be compromised by the effects of the neural network context. I pursue this topic in Chapter 5. 
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So what, then, of Jungé and Dennett’s suggestion? The problem, as I see it, is that 

it confuses modularity with faculty psychology more generally, and so reduces it to a 

platitude. Being neither controversial, falsifiable, or particularly interesting, the system 

view fails to live up to the theory’s venerable reputation. On such an expansive definition, 

who would not emerge as a defender of modularity? Certainly few theorists in the 

cognitive neurosciences would deny the utility of functional decomposition as an effective 

research strategy (Prinz 2006; Piccinini & Craver 2011; Boone & Piccinini 2016).6 And of 

course a high-level cognitive system composed of shared neural elements might well 

exhibit natural kind properties, such as a systematic set of procedures for dealing with 

typical inputs (Chomsky 1980a; 2006; Pinker 1997). But it is difficult to see how such a 

definition could have any substantively worthwhile theoretical upshots, certainly of a kind 

that could possibly justify the enormous effort spent in advancing modularity as some 

sort of solution to a deep and longstanding set of issues. On this weak view, what would 

the modularity of cognition explain about cognition beyond the simple fact that the mind, 

too, may be investigated using the techniques of natural science (i.e. “divide and 

conquer” works here too)? If the answer is “not much,” this cannot be a good account of 

modularity—assuming that by “modularity” we mean a substantive doctrine.	 On the 

weak construal, modules turn out to be little more than fruitful perspectives on the mind, 

the mind considered from this or that particular point of view, say, the point of view of its 

linguistic capabilities, its pitch discrimination capabilities, its problem-solving 

capabilities, and so on (in principle without limit). Such perspectives unquestionably give 

us useful entry points into what would otherwise be intractably complex, and allow us to 

figure out what it is that the mind actually does. But it is hardly surprising that a targeted 

coming-to-grips with a complex object should yield significant insights. The same 

strategy is familiar in one form or another in virtually all domains of rational inquiry, be 

they physical, chemical, biological, psychological or otherwise. That “science works here 

too” I take not to be an interesting claim, if it comes to that, because it does not so much 

																																																								
6  Decomposability and modularity do come apart. Boone and Piccinini (2016, p. 1524) outline “a 
mechanistic version of homuncular functionalism, whereby higher-level cognitive capacities are iteratively 
explained by lower-level capacities until we reach a level in which the lower-level capacities are no longer 
cognitive in the relevant sense.” While this might entail modularity for some lower-level elements (they do 
not say as much), it does not entail modularity for higher-level elements composed predominantly of shared 
parts (indeed the word “modularity” or “module” appears nowhere in their paper): see McGeer’s (2007) 
helpful discussion of the cognitive neuropsychologist’s understanding of modularity. Prinz (2006) is 
actually explicit that so long as the units of decomposition do not exhibit the properties associated with 
Fodorian modularity, we should proceed with decomposition but abandon the label of modularity. See my 
remarks, below, for further clarification of this point. 
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as provide a theory of cognition at all: if anything it says more about science than it does 

about cognition. Furthermore it is not entirely clear that the behaviourists would have 

spurned the sort of modules in view here. What they denied was the existence of sui 

generis principles, or the computational/architectural/modality independence of certain 

capacities (e.g. language), which I regard as evidence of true modules. They would not as 

a rule have denied that a partition of their subject matter could lead to interesting results. 

Recall the title of Skinner’s Verbal Behavior—I think it is fair to say that Skinner sought 

quite literally to explain the language faculty, albeit in terms of general associationist 

learning mechanisms, and is this not nearly comparable to the system sense of a module 

now under discussion? The behaviourists may have offered a shallow theory of human 

capacities, but even it did not appear to preclude modules in this sense (see e.g. Chomsky 

1979, pp. 49-51). Nor for that matter is there any logical reason why a connectionist or 

holist would have to rule them out either. Contemporary PDP models of cognitive 

architecture in fact do have a sort of generic componential motivation behind them 

(O’Reilly 1998; Jilk et al. 2008). 

 

 It is worth being clear about exactly why system modularity fails the test of 

“interesting.” It is easy to be misled here by the genuinely “interesting” results which 

have been achieved as a consequence of adopting the system view, i.e. by what has been 

learned about distinct domains of psychology as a result of iterative functional analysis 

(task analysis, decomposition, “boxology,” etc.). The system module’s notable successes 

as well as its historical association with the computational theory of mind and the view of 

the mind as richly and intricately structured are apt to lead to an exaggerated estimate of 

its true significance. Any theory of the mind pitched at the level of faculties (or analyzable 

parts, components, units, etc.)—as modularity most assuredly is—must tell us what it 

does about the mind through what it tells us about the faculties (or whatever the relevant 

units of analysis happen to be). If it does not speak “through the faculties,” as it were, it 

cannot so much as count as a faculty psychology, since the properties of the mind to 

which a faculty psychology brings our attention are, in the first instance, properties of the 

mind’s faculties. This point is at once obvious and yet so readily overlooked that it needs 

to be emphasized. That the mind is richly structured, that the mind is a computer, that 

the mind obeys laws exhibiting a clear mathematical structure, and so forth—these 

statements, if they are true, are true of the mind generally, meaning that it ought to be 
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unsurprising if the divisions of the mind are correspondingly rich, intricate, 

computational, systematic, and so on. None of these properties attach to faculties per se. 

Moreover, learning that the language faculty has such and such features, or that vision 

operates in this or that fashion, need not tell us much about faculties qua faculties either, 

as against telling us about this or that particular faculty. Thus neither general claims 

about the mind associated with the Cognitive Revolution, nor specific claims about 

specific faculties, hard won though these insights may have been, automatically get 

reckoned as among the distinctive insights marking out a truly general theory of faculties, 

which is after all what a faculty psychology aims to be. Contrast such claims with those of 

a well developed faculty psychology (e.g. Fodor 1983). The roster of properties associated 

with Fodorian modularity (domain specificity; encapsulation; shallow, fast and mandatory 

processing; hardwiredness; etc.) do not amount to a list of properties pertaining to the 

mind generally, nor to specific faculties considered independently, but to all faculties qua 

faculties. This is what made his theory interesting. So as easy as it is to roll the system 

module in the glitter of the Cognitive Revolution, a frank assessment of this module 

demands that we isolate clearly what it is the theory which posits such modules says about 

the mind at the level of faculties—and when we do this, I maintain, we will be hard put to 

find anything that would not heartily be conceded by anyone who believes in the power of 

science (be they classical modularists, connectionists, holists, and, as I suggested, 

probably even behaviourists mutatis mutandis). Furthermore, lest it be thought that the 

very idea of functional decomposition can underwrite the system view—for one must 

admit that decomposition proceeds in a curious fashion in the context of computational 

systems, namely the execution of subroutines by homunculi, surely a nontrivial design 

feature of such systems—it need only be pointed out that homuncularity is not the same 

thing as modularity. Careful psychologists have always understood the difference, and 

that modularity is really a special type of homuncularity (Mahon & Cantlon 2011, pp. 

149-151), just as homuncularity is a special type of decomposition (van Gelder 1995, p. 

351). It is interesting to observe in this connection that David Marr, one of the chief 

architects of the computational theory of mind, did not see computationalism (and 

therefore, we may surmise, homuncular functionalism) as providing a free pass to his 

“principle of modular design.” Modularity seems for Marr to be an added feature that 

some computational systems, for largely heuristic reasons, might be thought to possess: 
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Any large computation should be split up and implemented as a collection of 
small sub-parts that are as nearly independent of one another as the overall task 
allows. If a process is not designed in this way, a small change in one place will 
have consequences in many other places. This means that the process as a whole 
becomes extremely difficult to debug or to improve, whether by a human designer 
or in the course of natural evolution, because a small change to improve one part 
has to be accompanied by many simultaneous compensating changes elsewhere. 
(Marr 1976, p. 485) 

 

So although homuncularity is not as generic as “mere decomposition,” it is nowhere near 

as important a principle as modularity either. Accordingly (and for additional reasons I 

canvass below), we should withhold the more serious designation from generic system 

subcomponents and procedures that are nondissociable. 

 

 So far I have said nothing about two important features of classically modular 

systems, domain specificity and informational encapsulation. Can they get the system 

module over the line? Actually the question itself is incoherent. Consider that once a 

module is allowed to consist of shared parts, it can no longer be domain-specific, except 

perhaps in an abstract sense. This is because the “module” will be sensitive to potentially 

many domains, since its parts are presumably domain-general (see below, § 4.3). Put 

another way, domain specificity7 requires a functionally integrated unit that can respond 

to specified inputs. While the component modules of a composite consisting of shared 

parts would be functionally integrated, it is not obvious that the composite itself would 

be, although it might be said to have a sort of ad hoc integrity when in use. Notice also 

that a composite is unlikely to be informationally encapsulated “precisely because in 

sharing parts [it] will have access to the information stored and manipulated by [other 

high-level systems]” (Anderson 2010, p. 300). Anatomically distributed and overlapping 

brain networks simply must share information on some level (Pessoa 2016, p. 23). 

Lacking both of these properties, then, one or the other of which has been considered 

definitive (Coltheart 1999; Fodor 1983, p. 71), its postulation does not quite serve the 

purposes many would assume. One might have supposed that the system module could 

be more strongly motivated if at least it had the property of either domain specificity or 

encapsulation (in a concrete and unambiguous sense). And yet just because it is a 

																																																								
7 Of whatever variety—strict or formal (see §§ 2.4.3 and 5.1). 
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composite it can be neither truly domain-specific nor (in all likelihood) informationally 

encapsulated. 

 

In something of a reductio, then, the system view of modularity leads only to the 

claim that the mind can do different things at different times. Certainly a more ambitious 

and theoretically interesting claim than this is available, namely that the mind can do 

different things at the same time; but as far as we know this requires functional 

specialization, i.e. separate moving parts (real modules), since the prospect of neural time-

sharing appears low (see § 7.5 on the time-sharing problem). The pervasiveness of 

cognitive interference effects and processing bottlenecks in stimulus-rich environments 

that impose overwhelming attentional demands are enough to make this clear (Anderson 

2010, p. 250). In short, either these debates are trifling, or the claims at stake are more 

adventurous than the system view permits. Here I shall presume that the more 

adventurous reading is correct, and that, in any event, functional dissociability really 

ought to be considered the sine qua non of modularity. 

 

Bear in mind also that in the context of cognitive neuropsychology, modules have 

been defined largely by reference to what the dissociation evidence has revealed, i.e. “on 

the basis of the specific behavioral effects of brain lesions” (Bergeron 2007, p. 177). 

Bergeron calls this inferential strategy the “functional modularity inference.” Basically, 

“the presence of highly selective cognitive impairments (dissociations) like prosopagnosia 

and various linguistic processing deficits suggest [sic] the functional independence of at 

least some cognitive processes,” and this in turn licenses the postulation of functionally 

independent modules subserving those processes (Bergeron 2007, pp. 176, 177; 

Gazzaniga 1989, p. 147). The fact that brain lesions are often also relatively localized 

suggests that such modules reside in a “specific and relatively small portion of the brain” 

(the “anatomical modularity inference”) (Bergeron 2007, p. 176; Gazzaniga 1989, pp. 947, 

950). Make no mistake, the legitimacy of these inferences is hotly contested, since noisy 

dissociations are compatible with a system’s being dissociable, and clean dissociations 

compatible with a system’s being substantially nondissociable. In the first instance, “there 

are a variety of reasons, well explored in the neuropsychology literature, for which lesions 

to brain systems can produce noisy rather than clean patterns of breakdown even when 

the systems required to complete the task are modular” (Barrett & Kurzban 2006, p. 642). 
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A good example would be a focal lesion at the border of two adjacent modules—the 

breakdown would not be clean, and yet the two systems would be modular. In the second 

instance, even perfect (or “double”) dissociations cannot conclusively establish that the 

affected systems are modular, for a lesion might only compromise a small isolable 

component of an otherwise highly interpenetrative circuit. Damage to this component 

might result in the system depending on that component being independently impaired, 

but it does not follow from this that the system would be functionally dedicated (although 

admittedly it would be dissociable at the margins). In light of this, it may come as 

something of a surprise to be told that these arguments 

 

have failed to deter theorists from employing either of the inferential strategies. 
Indeed, the functional modularity inference continues to be one of the most 
common approaches among cognitive neuropsychologists for inquiring about the 
structure of cognition. Similarly, the recent cognitive neuroscience literature 
abounds more than ever with cases involving the use of the anatomical modularity 
inference. (Bergeron 2007, p. 177) 

 

But what the persistence of these inferences bears witness to is the fundamental role that 

dissociation evidence plays in the search for modules, and that functional specificity itself 

continues to be the lodestar for deciding upon whether and if so to what extent the mind 

is modular within the major disciplinary fields concerned with this question. As we have 

seen, the same assumption underwrites evolutionary psychology and massive modularity, 

the central claim of which is that the mind is predominantly composed of parts selectively 

shaped by evolutionary pressures (Carruthers 2006). As two prominent evolutionary 

psychologists state their position (Barrett & Kurzban 2006, p. 630): “…we intend an 

explicitly evolutionary reading of the concepts of function and specialization: modules 

evolved through a process of descent with modification, due to the effects they had on an 

organism’s fitness.” This view predicates the existence of systems which, though perhaps 

spatially extended and neurally interspersed, are dissociable in principle: 

 

Psychologists generally agree—as do we—that because cognitive architecture is 
instantiated in brain architecture, the two will be isomorphic at some 
level….However, at a larger, macroscopic level, there is no reason to assume that 
there must be spatial units or chunks of brain tissue that neatly correspond to 
information-processing units. An analogy might be to the wiring in a stereo, a 
computer, or other electronic system: Individual wires have specific functions, but 
at the level of the entire machine, wires with different functions might cross and 
overlap. For this reason, removing, say, a three-inch square chunk from the 
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machine would not necessarily remove just one of the machine’s functions and 
leave the rest intact. In brain terms, it could be, and probably is, that macroscopic 
regions of brain tissue include neurons from multiple information-processing 
systems with multiple functions. (Barrett & Kurzban 2006, p. 641) 

 

And of course other contemporary models of cognitive architecture, such as the 

successful ACT-R model, also posit the existence of independently modifiable 

subsystems of the brain. 

 

When it comes to clarifying just what makes modularity interesting, one final set 

of considerations may be suggestive. While terminological nuances can hardly be decisive 

in an area like this, I think it is no coincidence that massive modularity bottoms out in 

claims about the separate modifiability of functional components. This is because the very 

word “module” evokes images of movable parts that can be assembled and reassembled in 

a variety of distinct combinations, and which may be affected independently of one 

another. If all modularity amounts to is the claim that the mind can do different things at 

different times (rather than the stronger claim that it can do different things at the same 

time), and this suffices to call it modular, it ought to be permissible to say that a knife 

which cuts both meat and bread is modular. And yet no one thinks of knives as modular 

(unless they are Swiss army knives which actually come with different blades). It is I 

think instructive that other anatomically nondissociable systems with shared parts, such 

as nervous systems, reproductive systems, endocrine systems and the like—all of which 

may be singled out for their natural kind properties—are termed “systems.” One never 

hears of digestive modules or reproductive modules. The “modules” of developmental 

biology and neuroscience which do have shared and reusable elements are an anomaly of 

network science. Most biologists, including developmental biologists, continue to think of 

modules as “anatomically distinct parts that can evolve independently” (Wolpert 2011, p. 

115). Limbs and vertebrae would be modular on this view (being organs), but not the 

larger anatomical systems they comprise. 

 

It is well worth stressing here that my argument should not be read as an instance 

of mere carping or terminological pedantry. There are certainly occasions when scruples 

over the use of words reveal carping tendencies, and nothing much beyond that, but this 

is not one of them. Philosophers and cognitive scientists who allege a “module” for this 

capacity and a “module” for that capacity must be taken to be saying something 
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substantial, i.e. something more than merely the fact that we have the capacities in 

question. To dignify these capacities with the honorific title “module” is, I would 

suggest, an attempt to invest the capacities with special-purpose, special-structure status. 

If philosophers and cognitive scientists persist in referring to modules for X and Y in the 

face of contrary evidence (i.e. evidence suggesting that the X and Y “modules” are not 

special-purpose, special-structure devices), they betray a willingness to exploit the 

connotations of a powerful term for rhetorical purposes. For if by alleging that there is a 

module for X or Y the speaker intends only to say that we can give systematic accounts of 

X and Y—where X and Y represent particular foci of the scientific gaze upon the mind—

the speaker is only avowing a belief in the efficacy of the scientific method in the realm of 

cognition, which I take no naturalist to deny. In such circumstances it would be better to 

drop the term “module” altogether, and settle for a less loaded (and therefore more 

honest) term like “capacity,” “faculty,” or “system.” 

 

So while it is true that I am insisting on correct usage, this insistence is not 

without justification, and not without consequences should laxity prevail. In some ways 

the issues here are analogous to those which have arisen in the philosophy of biology over 

the proper use of the word “innate” (see Chapter 6). Neither those who urge 

elimination—because the word engenders confusion and fallacies of ambiguity amid a 

plethora of conflicting folk-biological intuitions—nor those arguing that a technical 

definition can be given, should be seen as engaging in a merely feeble semantic dispute. 

 

4.3 THE BRAIN MODULE 

 

As I have already mentioned several times in passing, neuroscience gets by for the most 

part with a very specific notion of modularity to hand. This is not the sense in which 

modules are familiar in network science, nor the sense in which they are familiar in most 

of psychology and cognitive science. The neuroscientific module is sometimes called a 

“brain module” or “cortical module” (Mountcastle 1978; 1997; Pascual-Leone & 

Hamilton 2001; Gold & Roskies 2008; Rowland & Moser 2014; Zador 2015), other times a 

“cortical column” or “columnar module” (Mountcastle 1978; 1997; Buxhoeveden & 

Casanova 2002; Amaral & Strick 2013; Zador 2015), still at other times an “elementary 

processing unit” (Kandel & Hudspeth 2013), or simply an “operator” (Pascual-Leone & 
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Hamilton 2001; Pascual-Leone et al. 2005). As I foreshadowed earlier, it corresponds 

roughly with the node of a neural coactivation graph. Slight variations in the meanings of 

these terms will not be important in the present context. It is true that the cortical 

“column” forms part of a distinctive hypothesis in neuroscience that arguably 

contemplates a narrower class of phenomena than is conveyed by the nodes of a network 

graph. But nothing need turn on this here. Indeed from one point of view the metamodal 

(reusable) node is a fully generalized account of the more specific columnar module 

(Jacobs 1999, pp. 33-34; Pascual-Leone & Hamilton 2001, pp. 427-428, 441, 443). 

 

Various formulations of the criteria for modularity have been proposed in 

neuroscience (Buxhoeveden & Casanova 2002, p. 940). The general notion is of a 

coherent functional unit with a more or less dedicated input-output specification, 

somewhat on a par with the modern microprocessor chip (Leise 1990, p. 1). Gazzaniga 

(1989, p. 947) assumes “a high degree of functional specificity in the information 

transmitted over neural systems,” and that modular organization consists of “identifiable 

component processes that participate in the generation of a cognitive state. The effects of 

isolating entire modular systems or of disconnecting the component parts can be 

observed” (my emphasis). Leise (1990) defines a module as a group of cells with similar 

response properties (see also Amaral & Strick 2013, p. 348; Zador 2015, p. 44). Krubitzer 

(1995, p. 412) defines them as “structural and physiological discontinuities within the 

limits of a classically defined cortical field...reflected in architectonic 

appearance…neural-response properties, stimulus preference and connections.” The idea 

here is clearly predicated upon both functional and anatomical specificity. 

 

The brain module’s explanatory rationale is simple. As Gazzaniga (1989, p. 947) 

concludes from a review of the comparative evidence, “research on animals has led to the 

belief that there are anatomic modules involved in information processing of all kinds and 

that they work in parallel and are distributed throughout the brain.” In the same vein, 

Kandel & Hudspeth (2013, p. 17) state that neuroscientists “now think that all [high-

level] cognitive abilities result from the interaction of many processing mechanisms 

distributed in several regions of the brain. Specific brain regions are not responsible for 

specific mental faculties” (my emphasis). High-level gross functions such as language, 

perception, affect, thought, movement and memory “are all made possible by the 
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interlinkage of serial and parallel processing in discrete brain regions, each with specific 

functions” (Kandel & Hudspeth 2013, p. 17, my emphasis; Bressler 1995; Gazzaniga 

1989, p. 947). High-level mental functions fractionate into low-level subfunctions, then, 

and it is these narrowly defined low-level operating systems that are understood to satisfy 

the criteria for modularity in neuroscience. The key principle here is that of distributed 

parallel processing, in which “functional parts…interconnect uniquely to form processing 

networks” (Krubitzer 1995, p. 408; Bressler 1995; Mountcastle 1997, p. 717). Kandel and 

Hudspeth give a vivid illustration: 

 

Simple introspection suggests that we store each piece of our knowledge as a 
single representation that can be recalled by memory-jogging stimuli or even by 
the imagination alone. Everything you know about your grandmother, for 
example, seems to be stored in one complete representation that is equally 
accessible whether you see her in person, hear her voice, or simply think about 
her. Our experience, however, is not a faithful guide to how knowledge is stored 
in memory. Knowledge about grandmother is not stored as a single representation 
but rather is subdivided into distinct categories and stored separately. One region 
of the brain stores information about the invariant physical features that trigger 
your visual recognition of her. Information about changeable aspects of her face—
her expression and lip movements that relate to social communication—is stored 
in another region. The ability to recognize her voice is mediated in yet another 
region. (2013, pp. 17-18) 

 

This picture fits flush with the sort of distributed parallel activation evidence that 

underpins neural reuse (Pasqualotto 2016; Pessoa 2016). Indeed, to the extent that they 

are not strictly domain-specific, the stable low-level operations that occur as nodes in 

these distributed systems seem to be the empirical equivalent of the low-level cognitive 

workings posited in the earliest formulations of the massive redeployment hypothesis. 

 

A little history will clarify the significance of this discovery. The elaboration of 

the distributed processing model is the high point of an intense research effort within the 

structuralist tradition. In my earlier discussion I noted that Carl Wernicke stood out 

among the ranks of modern neurologists with his distinctive vision of the structure-

function relation. I suggested that he may even have been operating with an implicit 

understanding of the difference between a cognitive working and a cognitive use 

(Bergeron 2007). In a famous paper, Wernicke (1908) described a novel kind of aphasia, 

one in which the patient can produce words but not comprehend them—the precise 

inverse of the pathology described by Broca earlier that century. The brain lesion 
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responsible for this aphasia was to a distinct cortical region of the left cerebral hemisphere 

(later called Wernicke’s area). Wernicke presented his account of this pathology in terms 

of an explicit neural model of language processing that attempted to steer a middle course 

between the two competing frameworks of his day, that of the phrenologists and cellular 

connectionists on the one hand, who contended that specific functions were realized in 

localized neural tissue (and were therefore guided by the anatomical modularity 

assumption), and that of the holists on the other hand, who supposed that every mental 

function involved the brain as an aggregate (Kandel & Hudspeth 2013). Wernicke’s 

model had only basic sensory-motor and perceptual functions localized to discrete regions 

of cortex. Higher functions depended on the cooperation of several neural elements, 

implying that single behaviours could not be pinned down to specific sites. Wernicke thus 

became the first neurologist to advance the thoroughly modern notion of distributed 

processing (Kandel & Hudspeth 2013; Mountcastle 1997). He assigned a specific 

language motor program governing the mouth movements for speech to the region 

implicated in Broca’s aphasia, and a sensory program governing word perception to the 

area implicated in the new aphasia he described. 

 

According to this model, the initial steps in neural processing of spoken or written 
words occur in separate sensory areas of the cortex specialized for auditory or 
visual information. This information is then conveyed to a cortical association 
area, the angular gyrus, specialized for processing both auditory and visual 
information. Here, according to Wernicke, spoken or written words are 
transformed into a neural sensory code shared by both speech and writing. This 
representation is conveyed to Wernicke’s area, where it is recognized as language 
and associated with meaning. It is also relayed to Broca’s area, which contains the 
rules, or grammar, for transforming the sensory representation into a motor 
representation that can be realized as spoken or written language. When this 
transformation from sensory to motor representation cannot take place, the 
patient loses the ability to speak and write. (Kandel & Hudspeth 2013, p. 12) 
 

The success of Wernicke’s clinical model in predicting a third type of aphasia—one in 

which “the receptive and expressive zones for speech are intact, but the neuronal fibers 

that connect them are destroyed”—as well as its general influence among late nineteenth 

century neurologists, helped inaugurate a new approach to cortical localization 

spearheaded by the German anatomist Korbinian Brodmann. Brodmann’s revolutionary 

method of distinguishing cortical regions on the basis of cellular shape and vertical 
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orientation brings us one step closer to the cortical columns that are now taken to be the 

“fundamental computational modules of the neocortex” (Amaral & Strick 2013, p. 348). 

 

 Brodmann’s contribution was to extend the histological and cytoarchitectonic 

methods of his day by working comparatively, i.e. across species. He showed that neurons 

in the cerebral cortex have both a layerwise (laminar) and vertical (columnar) orientation 

(Fig. 3(a)), and used this structure to guide his subdivision of the brain into more 

functionally discrete regions. Specifically, Brodmann noted differences in the packing 

densities and shapes of neurons as he bore down into the cortex, as well as differences in 

laminar thickness and synaptic connections as he traveled horizontally along its surface. 

This proved to be a decisive step, for we now know that functional differences in cortex 

depend on the relative thickness of layers as one moves from region to region. Each of its 

six layers is characterized by different inputs and outputs, with neurons projecting to 

different parts of the brain. “Projections to other parts of the neocortex, the so-called 

cortico-cortical or associational connections, arise primarily from neurons in layers II and 

III. Projections to subcortical regions arise mainly from layers V and VI” (Amaral & 

Strick 2013, p. 346). “Input” areas such as the primary visual cortex receive sensory 

information from the thalamus, and therefore have an enlarged layer IV since this is 

where axons from the thalamus typically terminate: “The input layer contains a 

specialized type of excitatory neuron called the stellate cell, which has a dense bushy 

dendrite that is relatively localized, and seems particularly good at collecting the local 

axonal input to this layer” (O’Reilly et al. 2012, p. 33). “Hidden” areas, processing 

neither inputs or outputs but essential to the formation of abstract category 

representations, are thickest at layers II and III, since the predominance of pyramidal 

cells in these layers makes them “well positioned for performing this critical 

categorization function” (O’Reilly et al. 2012, p. 34). Finally “output” areas have their 

thickest layers at layers V and VI, given that the efferent connections which typify output 

zones must “synapse directly onto [subcortical] muscle control areas,” and it is the 

neurons in these layers which best meet this requirement (O’Reilly et al. 2012, p. 34). 

Brodmann marked the boundaries where these surface differences occurred and was thus 

able to distinguish the 47 distinct brain regions that have since become synonymous with 

his name (Fig. 3(b)). Each of Brodmann’s brain areas consequently relates to a specific 
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cognitive or sensory-motor function: areas 44 and 45, for instance, correspond to Broca’s 

area, and area 22 corresponds to Wernicke’s area. 

 

   

(a)          (b) 

 

Figure 3. (a) A cross-section of the cortical sheet revealing its layered organization in accordance with cell 
type. (b) Brodmann’s famous brain map. Broca’s area is in Brodmann areas 44 and 45, close to primary 
motor cortex (Brodmann area 4). Wernicke’s area is in Brodmann area 22, close to primary auditory cortex 
(Brodmann areas 41 and 42). 
 

 This is where modules re-enter the story. The sort of cytoarchitectonic methods 

which Brodmann employed, while delivering a very useful functional subdivision by the 

standards of his day, were not quite able to do justice to the subtlety of functional 

variation in the cortex. For the five regions Brodmann designated as being concerned 

with visual function (areas 17-21), modern electrophysiological and connectional analyses 

have interposed 35. These take the form of cortical columns that run from the outermost 

surface of the cortical sheet (the so-called pial surface) to the white matter deep beneath 

layer VI. A column is in effect a very thin cross-sectional slice of the cortical field, no 

more than a fraction of a millimetre across, such that “[n]eurons within a cloumn tend to 

have very similar response properties, presumably because they form a local processing 

network” (Amaral & Strick 2013, p. 348). It is this distinctive columnar structure which 

passes for the basic cognitive module of neuroscience today (Mountcastle 1997; Zador 

2015), and its importance resides, partly at least, in the computational efficiency it confers 

on neural circuits: 

 

Columnar organization…minimizes the distance required for neurons with 
similar functional properties to communicate with one another and allows them to 
share inputs from discrete pathways that convey information about particular 
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sensory attributes. This efficient connectivity economizes on the use of brain 
volume and maximizes processing speed. The clustering of neurons into 
functional groups, as in the columns of the cortex, allows the brain to minimize 
the number of neurons required for analyzing different attributes. If all neurons 
were tuned for every attribute, the resultant combinatorial explosion would 
require a prohibitive number of neurons. (Gilbert 2013, p. 570) 

 

At least part of the motivation for the brain module, then, is to address concerns around 

the scaling problem we encountered in § 3.2 (i.e. as the number of neurons increases, the 

number of neurons that must be connected grows quadratically larger). It is genuinely 

modular in the sense of possessing both functional specificity—i.e. a discrete 

computational operation definable over a preferred (but nonexclusive) set of inputs—and 

spatial localization (Pascual-Leone & Hamilton 2001, pp. 441, 443; Gazzaniga 1989, p. 

947; O’Reilly et al. 2012, pp. 36-40; Pasqualotto 2016; Pessoa 2016). 

 

 All this is predominantly (and paradigmatically) true of the sensory-motor cortical 

maps discussed in Chapter 2. Many of these have “functionally specific, connected 

neurons to extract behaviorally relevant features [e.g. lines and edges from spatial 

receptive fields] from incoming sensory information” and “a degree of functional 

autonomy” (Rowland & Moser 2014, p. 22). Whether this organization is exemplified also 

by nonsensory/nonmotor high-end association cortices has not up until now been clear, 

but Rowland & Moser (2014) review evidence suggesting that there are definite 

similarities between sensorimotor columns and the organization found in medial 

entorhinal cortex (MEC) implicated in episodic and spatial memory tasks. If the grid map 

of MEC really were to be organized in this modular fashion, it would certainly put paid to 

the idea of a rigid Cartesian distinction between “central” and “peripheral” cognition as 

far as modularity is concerned (see § 7.2.2). Of course the precise degree to which MEC 

resembles columnar organization is the crucial question. The similarities for their part are 

clear: MEC has “vertically linked cells, tight bundling of dendrites from the deeper 

layers, and predominantly local connections raising the possibility that it contains 

functionally autonomous columns” (Rowland & Moser 2014, p. 22). Moreover, “MEC 

has well-defined spatial responses that allow the cells to be analyzed for topography and 

modularity in their response properties” (Rowland & Moser 2014, p. 22). There is one 

noteworthy difference, however. The majority of entorhinal modules appear to be 

anatomically intermingled such that while they remain functionally independent and 
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discrete (dissociable in principle) they are anatomically overlapping and spatially 

interspersed, rather than strictly localized. Entorhinal modules therefore appear to be 

merely functional, not anatomical. Their functional specificity is further corroborated by 

the fact that, although columns are themselves composed of far smaller units called 

“minicolumns” (consisting of between 80-100 neurons), “[n]o research has yet 

determined the capacity of minicolumns for independent activity outside the 

macrocolumn that they belong to” (Buxhoeveden & Casanova 2002, p. 937). The upshot 

of all this is that the brain could be organized into column-based modules of roughly 

common form throughout, including regions that are important to central cognition. 

 

 What needs most emphasizing about the brain module are those very qualities 

which set it apart from the classical notion that still features unmistakably in discussions 

of modularity within cognitive science, cognitive neuropsychology, neuropsychology and 

the philosophy of mind. Here I am referring to its extremely restricted scope—an 

exiguously small subfunctional computation—and its dynamic metamodal response 

properties: the brain module is in essence a domain-general reusable operator appearing 

within various interacting, nested and distributed neural assemblies (Mountcastle 1997; 

Jacobs 1999; Pascual-Leone & Hamilton 2001, Pascual-Leone et al. 2005; Pasqualotto 

2016; Pessoa 2016). We saw these dynamic response properties in connection with an 

earlier discussion revolving around crossmodal plasticity, supramodal organization and 

domain specificity (§§ 2.4.2-2.4.3). I shall revisit and elaborate on this material in the next 

section, when I explain more fully the character and import of Pascual-Leone & 

Hamilton’s (2001) original metamodal hypothesis of brain organization. It will be relevant 

both on the issue of the functional specificity of modules (§ 5.1) and their early 

development (Chapter 6). 

 

Thus far I have provided an outline of the varieties of modularity, defended what 

I take to be indispensable in any modular theory of the mind, and foregrounded the 

neuroscientific notion of modularity. The next chapter pursues head-on the implications 

of neural reuse for the modularity of mind. 
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4.4 SUMMARY 

 

In recent decades neuroscience has challenged the orthodox account of the modular 

mind. As I have shown, one way of meeting this challenge has been to go for increasingly 

“soft” versions of modularity, and one version in particular, which I dub the “system” 

view, is so soft that it promises to meet practically any challenge neuroscience can throw 

at it. But an account of the mind which tells us that the mind can do different things, 

even interesting things, is not itself necessarily an interesting account. In this chapter I 

have reconsidered afresh what we ought to regard as the sine qua non of modularity, and 

offered a few arguments against the view that an insipid “system” module could be the 

legitimate successor of the traditional notion. In part my arguments can be read as a plea 

for the precise use of language, but there is more than pettifogging behind this plea. 
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5 
_____ 

 

Modules reconsidered: Whither modularity? 
 

 

 

 

 

 

5.1 DOES MODULARITY SURVIVE THE EVIDENCE OF NEURAL REUSE? 

 

One of the primary contentions of this chapter is that the cortical column we have just 

examined is probably the only robust example of modularity that could survive evidence 

of reuse, and this just because reuse seems almost destined to predict something very 

much like it: small, stable, reusable nodes appearing within various distributed networks 

spanning various cognitive domains. The question before us now is whether despite 

appearances neural redeployment really is compatible with the degree of functional 

specificity that modularity demands. 

 

One thing appears reasonably certain. If the cortical column (or Andersonian 

working) were to survive reuse as the dedicated and functionally specific cognitive unit 

that it would need to be, not only would reuse then be compatible with the modularity of 

mind, it seems fair to say the Fodorian module itself would be likely to survive in some 

form—at least to the extent that cortical columns retain both stimulus specificity and 

informational autonomy, properties which they are likely to retain if brain regions are as 

task-selective and functionally constrained as the evidence in § 2.4.3 suggests they are. To 

be sure, the neo-Fodorian module would be a shadow of its former self, barely 

recognizable in point of size, and certainly no longer suited to its original role as a marker 

of high-level cognitive function.1 But the resulting picture of the mind would still be 

																																																								
1 By describing Fodor’s modules as “high-level” I mean only that they can be specified at the level of 
proprietary domains (e.g. at the level of vision, olfaction and language rather than simply at the level of 
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modular, and Fodor did after all contend for the modularity of mind (albeit in a very 

distinctive sense). 

 

 But does the cortical column—or its Andersonian concomitant—emerge 

unscathed in this way? To get a sharper sense of the options available to us on this 

question, I shall set the overall account of reuse in the context of Pascual-Leone and 

Hamilton’s (2001) original metamodal hypothesis, which is an important forerunner of 

contemporary theories of reuse, including Anderson’s. This account trades in brain 

modules, which it terms “operators,” and so allows me to convey very crisply the obvious 

sense in which modularity is compatible with reuse. I shall then walk through the 

principal objections to this view. Given what I take modules to be, my criterion of 

demarcation must be the degree to which dissociability no longer remains tenable even in 

principle. If functional specificity is no more than a will-o’-the wisp, modularity itself can 

be little more than that. To that end, I shall propose a simple device by which we can 

usefully conceptualize the problem facing the modularist. At its core, modularity turns on 

evidence of specialization. What we require, therefore, is a scale of specificity for brain 

regions which makes their indicia of specificity explicit. As far as I am aware, such indicia 

have not been propounded in any detail before. 2  I conclude this section with an 

assessment of the long-run prospects of modularity. 

 

 The metamodal hypothesis is intended to account for the observation that “our 

perceptual experience of the world is richly multimodal”—that “[w]e are able to extract 

information derived from one sensory modality and use it in another,” and “know a shape 

by touch and identify it correctly by sight” (Pascual-Leone & Hamilton 2001, p. 427). 

The hypothesis accommodates the possibility of crossmodal recruitment, and more 

specifically, the supramodal dynamics we encountered in § 2.4.3. Of relevance here is the 

fact that it is an adaptation of Robert Jacobs’ (1999) “mixtures of experts” (ME) model. 

The ME model builds on two important ideas. First is the idea of functional specificity 

																																																																																																																																																																		
edge-detection or depth discrimination). They are not high-level in the sense that they pertain to complex 
thought, judgment or memory. See § 7.2.2 for comment on Fodor’s central/peripheral distinction. 

2 I hasten to add, however, that Anderson’s (2014) “dispositional vector” account of brain regions is an 
alternative strategy for coming to grips with the same set of issues. Others are clearly alive to the problem. 
Proponents of the Leabra architecture, for instance, resist modularist terminology precisely because it 
“forces a binary distinction on what is fundamentally a continuum” (Petrov et al. 2010, p. 287). See also 
Frost et al. (2015). 
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and spatial localization (i.e. the anatomical modularity assumption). Different brain 

regions possess different structural properties, and these differences make for differences 

in functional capability to the extent that some regions will be better suited to performing 

particular functions over others. Second is the idea of competition between modules. 

Brain regions become specialized for processing particular inputs through open 

competition, but the competition is rigged, as it were, by the functional proficiencies 

which characterize the different regions: “each region tends to win the competition for 

those functions for which its structure makes it particularly well suited” (Jacobs 1999, p. 

32). Two predictions follow. One is that the differences between neural regions appear 

quite early in development, and might even be innate (an issue to which I return in 

Chapter 6). The other is that “neural modules should enforce the outcome of a 

competition through a set of adaptable inhibitory interactions that allow modules to 

suppress the outputs of other modules” (Jacobs 1999, p. 34). Accordingly, Pascual-Leone 

and Hamilton propose that, instead of “unimodal sensory systems that are eventually 

integrated in multimodal association cortical regions,” the whole cortex 

 

might actually represent a metamodal structure organized as operators that 
execute a given function or computation regardless of sensory input modality. 
Such operators might have a predilection for a given sensory input based on its 
relative suitability for the assigned computation. Such predilection might lead to 
operator-specific selective reinforcement of certain sensory inputs, eventually 
generating the impression of a brain structured in parallel segregated systems 
processing different sensory signals. In this view, the “visual cortex” is only 
“visual” because we have sight, and because the assigned computation of the 
striate cortex is best accomplished using retinal, visual information. Similarly, the 
“auditory cortex” is only auditory in hearing individuals and only because the 
computation performed by the temporal, perisylvian cortex is best implemented 
on cochlear, auditory signals. However, in the face of visual deprivation, the 
“striate cortex operator” will unmask its tactile and auditory inputs to implement 
its assigned computation using the available sensory information. (2001, pp. 427-
428) 

 

The crucial message for us here is that on this picture, despite neural operators being 

functionally and computationally constrained, their range of application is not. Neural 

operators are intrinsically versatile from the point of view of which inputs they can 

process, limited only by the amenability of the inputs to undergo a definite sort of 

manipulation. Barrett and Kurzban (2006, pp. 634-635) call something like this formal 

domain specificity—a construal of domain specificity where “domain” does not refer to 
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the set of objects or stimuli betokened by a traditional task category, but instead to inputs 

defined by reference to the formal processing competence of the system in question. 

Formal domain specificity is therefore a syntactic construal of domain generality, and sets 

the stage for the pervasiveness of redeployment as a basic strategy of neural design. It 

comports with a view of the brain in which its several regions have a manifold of latent 

afferent input channels—preexisting connections supplying the critical cortical 

infrastructure which makes reuse possible. And while the picture presented in the above 

quotations would suggest a certain stability or equilibrium is achieved after a suppression 

mechanism ensures the best module wins (so that individual modules get tuned to 

particular inputs and not others), as the examples presented in Chapter 2 dramatically 

attest, we do not have to wait for “visual deprivation” for this hidden complexity to be 

“unmasked,” since it is a normal feature of healthy adult brains to exploit these channels 

all the time (e.g. when “seeing” the face of a loved one at the sound of their voice, or tools 

at the sound of a hammer, etc.). Hence supramodal organization simply entails neural 

reuse. Moreover, the model demonstrates how readily modularity can be combined with 

redeployment, inasmuch as the latter naturally presupposes the former. 

 

But now we must finally confront the objections to this “minimodule” view which 

reuse seems to entail. We can distinguish two broad lines of attack, one weak, the other 

far more serious and potentially fatal. It is well to address the weaker one first. Here the 

charge is that minimodules are “compatible with an anemic version of localization that 

claims simply that individual brain areas do something, and the same thing, however low-

level, simple, or cognitively uninteresting, whenever they are activated” (Anderson 2007c, 

p. 164). Such entities can hardly be controversial, since very few people nowadays regard 

the brain as a “disorganized mash” (Prinz 2006). Notice that this is the same objection I 

raised earlier against the system view of modularity: “when the notion of modularity is 

denatured, it turns into a platitude” (Prinz 2006). And for all their differences, neither 

systems nor minimodules pretend to solve the evolutionary debugging problem. So we 

seem to have another case of truism dressed up as theory. 

 

In the case of minimodules, however, I think the objection can be overplayed. It is 

true that minimodules are incapable of offering a simple way through the debugging 

problem, and this might be thought to commend the sort of modules defended by 
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evolutionary psychologists instead. But what would be the use of a theory which resolved 

puzzles by ignoring reality? A theory must aim to be both tractable and realistic (Coase 

1937). As convenient as it would be for us to suppose that modules are independently 

modifiable high-level cognitive components, the evidence of neural reuse suggests that 

this is not how the brain is organized. So either the problem itself is real and the evidence 

of reuse must be explained away, or the assumption that no non(massively)modular brain 

could possibly evolve must be set aside. Surely the latter approach would be the more 

sensible. The debugging issue itself is to a large extent a symptom of looking at things the 

wrong way. If we accept that on some level evolution has to involve the emergence of 

functionally exiguous neural parts, and view the engineering problem as being how 

preexisting parts might be combined in novel ways, concerns over debugging become far 

less pressing. Minimodules, in any case, are not trivial. The mind could have been (and 

indeed has been) modeled in very different ways (think connectionism/PDP, holism, 

etc.), and a minimodule hypothesis is quite demonstrably falsifiable (unlike, say, the 

system view). Minimodules also support robust predictions (like forward inference) and 

theory-building. The truth is that minimodules are as modular as they need to be—

modular enough to solve the very real wiring problems posed by scaling circuits, and 

modular enough to rule competing accounts like functional holism and strict localization 

out of the question. The trivialization charge is a nonstarter. 

 

What then of the more serious line of attack? Although there are developments of 

the argument in several directions, its general thrust is to make a lot of the fact that the 

brain implements a network. Anderson (2010, p. 249) frames the issue in these terms: 

“Instead of the decompose-and-localize approach to cognitive science that is advocated 

and exemplified by most modular accounts of the brain, neural reuse encourages ‘network 

thinking.’ ” To recapitulate briefly, all networks share a number of important properties, 

properties which make the study of any structure that exhibits a network design far more 

tractable than it might otherwise be. Preeminent among these of course are nodes and 

edges, but a defining mark of the network approach is its focus on the global structure of 

interactions between nodes, rather than the individual nodes themselves. Thus if the 

brain is a network, modularity goes awry, for even if we were to concentrate all our 

energies upon modules qua nodes (e.g. minimodules), still we would be missing the 
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point—the key to networks lies not in their nodes, but in the structure of their 

interactions. 

 

Such is the clear-cut statement of the challenge. Put in this form, however, it just 

overstates the case. First, the fact that a team of soccer players exhibits higher order 

dynamics in no way obviates the importance of individual players to the game; indeed 

their unique talents and skills are what drive the interactions which feature at the level of 

abstract topology. Second, and this is well worth remembering through all the hype, one 

should be no less judicious in one’s use of a network analogy than in one’s use of any 

other: 

 

Although the terms “network” and “connectivity” are widely used when talking 
about regional covariation in the human brain, it is important to keep in mind that 
no human data at present allow us to make inferences about brain regions forming 
networks in the true sense of the word. In particular, under a technical definition, 
two brain regions form a network if they are anatomically connected, typically via 
monosynaptic projections. In living humans, we rarely, if ever, can say anything 
conclusive about anatomical connections among brain regions…[C]ollections of 
regions are more appropriately characterized as functional systems. (Fedorenko & 
Thompson-Schill 2014, p. 121) 
 

Still, even if we were to moderate the argument in allowing for such 

complications, the network challenge would remain. We may for convenience describe 

three distinct iterations of the challenge, each more persuasive than the last, which in one 

way or another play upon the importance of the network context for understanding local 

function (inasmuch as context determines meaning). The thought here is that because 

minimodules appear across multiple and functionally diverse neural communities, they 

lack the precise degree of specialization required of modules—in view of just how tiny 

minimodules are, the more partnerships a given minimodule enters into, the more 

abstract its contribution becomes and the dumber, simpler and more generic it will 

ultimately be (Klein 2012). Price and Friston (2005, p. 268) use the example of a 

forefinger. Its many roles could include piano playing, typing, scratching, pinching and 

feeding; yet if we had to designate its overall role, we would have to settle on something 

explanatorily inert: “the forefinger can only do one thing—‘bend’ and ‘straighten.’ Its 

role in other tasks is…entirely dependent on what the other fingers and thumbs are doing 

and what environmental context they are in.” In short, “naming the specific function that 
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a region performs (or even supposing it has some single specific function) involves a kind 

of abduction that is inherently underconstrained and uncertain” (Anderson 2014, p. 53). 

 

Another way of framing the issue is in terms of plasticity. The more functionally 

versatile and unstable a brain region, the more plastic it must be (other things being 

equal). At the limit, ontogenetic plasticity might be so great that even sudden, swift 

connection changes to the neural configuration of a given brain region between 

alternating task demands would be possible, and functional stasis merely illusory. Up 

until now neuroscientists have simply presumed that a network approach can naturally 

complement a modular approach—naturally, because from the minimodule perspective 

modules are nothing more than the nodes of a coactivation graph; but the plasticity of 

neural regions might so undermine their functional specificity that even neuroscientists 

will have to give up the pretense that nodes can be modules in the full-blown sense they 

almost always take for granted, as when they describe nodes as “functionally specific 

brain regions” or “regions that are selectively engaged by a particular mental process” 

(Fedorenko & Thompson-Schill 2014, p. 121).  In the event that neuroscientists might 

still like to refer to nodes as modules—much in the way they conventionally use the term 

to describe the communities of nodes in graphs—it would be a case of terminological 

convenience trumping theoretical rectitude. 

 

The weakest iteration of the challenge adds little to what has already been said, 

but it might note how the preponderance of afferent input pathways sustaining the brain’s 

supramodal organization must ever so slightly colour an individual module’s operations as 

to rob it of a deep and lasting functional essence. The more functionally promiscuous a 

region, joining now with the visual system, now with the language system (say), the more 

we can expect the neural context to impinge on the region’s functional capabilities. Brain 

regions are by and large fairly homogeneous anyway (Buxhoeveden & Casanova 2002, p. 

941). Standard histological preparations and cytoarchitectonic methods often fail to reveal 

anatomical differences between neighbouring yet functionally distinct cortical columns. 

Thus an important strategy by which the brain generates difference from sameness is 

through the formation of different interconnection patterns among neurons and regions, 

indeed often among the very same neurons and regions. Input channels therefore cannot 

be conceived as merely useful appendages to the lines of script run by distinct neural 
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operators, as they are themselves partly constitutive of the operations performed by them. 

Functional promiscuity means we cannot retain a prespecified notion of function for 

brain regions considered in isolation of the neural contexts in which they appear. 

 

Now it must be said that when put like this the argument again runs the danger of 

just overstating its case. For what it seems to lead to is a variety of holism. Insofar as that 

is where this line of thinking is taking us, it should be resisted, for the weight of evidence 

does not support holism, classical connectionism/PDP, or anything like it really. With 

that proviso in place, the argument is a good one—functionally distinct operators with 

functionally distinct input criteria can be observed in the brain, but a moderate pitch to 

incorporate the effects of context would not go astray. Let us call these “weak context 

effects.” Weak context effects are those which do not compromise a brain region’s ability 

to perform a well-defined, functionally specific (albeit domain-general) operation. This is 

consistent with how Anderson (2010, p. 295) originally defined a working: “Abstractly, it 

is whatever single, relatively simple thing a local neural circuit does for or offers to all of 

the functional complexes of which the circuit is a part.” 

 

Evidence for stronger context effects are not hard to find. Let us call them “strong 

context effects.” These will constitute the basis for the second and third iteration of the 

network challenge, but before advancing any further on this front, I should make one 

point clear at the outset: there is something about strong context effects—implying as 

they do a much higher degree of plasticity for local circuits than we have encountered so 

far (details to follow)—which sits uneasily with aspects of the evidence of massive 

redeployment presented in Chapter 3. The problem is that strong context effects are 

incompatible with evidence suggesting that the units of redeployment are themselves 

relatively fixed in nature (even after allowing for synaptogenesis, etc.). To the extent that 

strong context effects obtain, then, the theory of reuse requires amendment. Anderson’s 

massive redeployment hypothesis, it will be remembered, predicts that recently evolved 

functions should be supported by more widely scattered regions of the brain than older 

ones, since it should on the whole prove easier to utilize existing circuits than to devise 

special purpose circuitry afresh, “and there is little reason to suppose that the useful 

elements will happen to reside in neighbouring brain regions” (Anderson 2010, p. 246). 

Not only is the evidence which Anderson cites consistent with this prediction, it could 
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also be taken to imply something more specific about the nature of local circuits, an 

implication which Anderson originally had no hesitation in drawing: 

 

If neural circuits could be easily put to almost any use (that is, if small neural 
regions were locally poly-functional, as some advocates of connectionist models 
suggest), then given the increased metabolic costs of maintaining long-distance 
connections, we would expect the circuits implementing functions to remain 
relatively localized. That this is not the observed pattern suggests that some 
functionally relevant aspect of local circuits is relatively fixed. (Anderson 2010, p. 
247) 

 

But while this is one way of interpreting the evidence, a distributed network organization 

might be favoured by evolution for rather different reasons. As Bullmore and Sporns 

(2012, p. 336-337) point out, one reason why a general principle of parsimonious cost 

control might be compromised in favour of far-flung neural circuits has to do with the 

resilience that such organization may be presumed to confer. Robustness to adverse 

perturbations—“[t]he degree to which the topological properties of a network are resilient 

to ‘lesions’ such as the removal of nodes or edges”—could well have more to do with the 

distributed structure of recently acquired capacities than the functional fixity of local 

circuits. At the very least, the inference that local circuits are not especially plastic again 

“involves a kind of abduction that is inherently underconstrained and uncertain.” 

Anderson himself appears to have moved on from his earlier commitment to fixed local 

workings, but not on account of resilience per se. He has lately been convinced by the 

evidence of strong context effects in its own right, and as a result no longer speaks of 

fixed local “workings,” preferring instead the less rigid connotations of the term “bias” in 

describing the functional proclivities of local brain regions. For Anderson a cortical bias 

represents “a set of dispositional tendencies that capture the set of inputs to which the 

circuit will respond and govern the form of the resulting output” (2014, p. 15)—an idea 

which reconciles a brain region’s versatility and its overall functional durability without at 

the same time insinuating “that each circuit does exactly one specific thing” (2014, p. 16). 

 

 So what exactly, then, are strong context effects? I think we may usefully divide 

them into two broad categories. The first category—motivating the second iteration of 

the network challenge—would appear to suggest that small brain regions can assume 

radically different network states, and thereby alter their basic electrophysiological 

configurations, depending on the requirements of the cognitive system being used. This 
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sort of operational, on-the-fly ontogenetic plasticity of neurocognitive resources 

undermines the purported functional fixity of brain regions, and hence the claim that 

brain regions can be modular (in the true sense of being functionally specialized). The 

second category—motivating the third and final iteration of the network challenge—goes 

even further than this by throwing into question the very legitimacy of functional 

decomposition as a basic strategy within the cognitive sciences. Here the thought is that 

“it is not as if we can identify the one fixed function of an element of the system and then 

worry about the effect of interactions later. Rather, the interactions are often precisely 

what fix local function” (Anderson 2014, p. 208). This may not at first appear to be saying 

much more than what was said in the first instance. In fact its ramifications are deeply 

unsettling for the “decompose-and-localize” approach to cognitive science, as I shall 

explain more fully in a moment. Let us take these two putative categories of context 

effects in turn.3 

 

 Evidence of swift, sudden connection changes in networks begins at the single 

neuron level. C. elegans has acquired fame as the nematode for which the first neural 

network wiring diagram was published. It contains about 300 neurons and up to 7000 

synaptic connections, simple yet complex enough to serve as a model of function-

structure dynamics within higher organisms. C. elegans neurons perform “more than one 

type of circuit function, including both motor and sensory functions,” and sometimes 

perform multiple functions within the same modality (Altun & Hall 2011). Beyond the 

straightforward implication here that neural reuse may be evolutionarily conserved, there 

are intimations of still more intriguing possibilities. Neuromodulation refers to a family of 

context effects in which it is possible for the same neuron to radically change function—

and perform in just the opposite role—in response to changes in the electrophysiological, 

chemical and genetic environment. One example is C. elegans’ olfactory neuron, 

AWCON, which can apparently signal both attraction and repulsion to the very same 

odour depending on its neuromodulatory configuration. Another is the nocioreceptive 

ASH neuron, which can direct both sociality and avoidance. But neuromodulation is not 

restricted to C. elegans. Similar effects have been documented in both the pond snail and 

honeybee, and there are enough instances within vertebrates to suggest that 

neuromodulation might be a basic evolutionary strategy for coping with scarce neural 

																																																								
3 I am heavily indebted to Anderson (2014) for the review which follows. 
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resources (Anderson 2014, p. 34). Of course before such results could support more 

ambitious inferences regarding human cognition, we would need evidence of large-scale 

modulation in more complex organisms. In the simplest organisms, small modifications of 

even single synapses can have significant behavioural ramifications. In larger and more 

complex organisms this is unlikely to be the case. In fact evidence of such large-scale 

effects does exist, even within the human literature. Most suggestive of all is the evidence 

Cole et al. (2013) report for “flexible hubs” in the brain which “flexibly and rapidly shift 

their brain-wide functional connectivity patterns” in response to changing task demands. 

If brain regions really do move into different functional configurations, as distinct from 

being redeployed in the same state for different purposes, it would imply that brain 

regions can be neither functionally specialized (in the sense of contributing a stable and 

predictable operation across their various higher order applications) nor dissociable, both 

because their disruption would directly impede the operation of an equivalent system—

the selfsame region considered from the standpoint of any of its alternative network 

states—and because it could well prove impossible to identify a segregable unit of neural 

tissue that retained a constant form from state to state.  

 

One upshot of this concerns theory-building. Any theory we construct that tokens 

a brain region subject to strong context effects will not be able to offer a fully general 

explanation of what that region offers to all of its networks. Even those who do not think 

contextualism would undermine our ability to construct powerful theories supporting 

strong predictions concede that we would nonetheless be in the realm of partial 

generalizations (Burnston 2016). Furthermore, part of the appeal of a theory which posits 

functionally specific brain regions is that it supports robust inferences: one should in 

principle be able to infer which brain region has been engaged simply from knowing what 

function is being performed. Strong context effects undermine the robustness of such 

inferences. 

 

None of this entails that the brain is equipotential or has an inherently open 

texture (as we shall see in Chapter 6). On the contrary, overlaps between the neural 

implementations of cognitive tasks are frequently found to involve functional and 

semantic inheritance (Mather et al. 2013, pp. 109-110; see also § 3.3), implying that brain 

regions have a stable set of causal features that regulates their participation in various 
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networks. This is consistent with the finding that recently acquired skills in the human 

lineage, such as reading and writing, have highly uniform neural substrates across both 

individuals and cultures (Dehaene 2005). But when the specific point in dispute is 

whether the mind/brain has a modular architecture, such facts alone cannot be decisive, 

for then the issue is not whether brain regions have specific developmental biases, input 

preferences, or an underlying structural and functional integrity, but precisely the degree 

to which brain regions are specialized. A bias is not a specialization. 

 

 To recapitulate, so far we have considered how natural the alliance between 

modularity and reuse can be, and proceeded to examine various objections to this view. 

The objections come in two forms, weak and strong. The weak objection alleges that 

minimodules are trivial entities, but we saw how this claim is in fact unwarranted. The 

stronger objection plays on the network structure of brain organization to reveal the 

illusoriness of functional specialization for individual brain regions, being merely network 

nodes whose functional importance is subordinate to internodal network interactions. 

This stronger network challenge in turn assumes three distinct forms, one emphasizing 

weak context effects (which we dismissed as instructive but not fatal to modularity), and 

two emphasizing strong context effects. The first category of strong context effects 

correlates with increasing ontogenetic plasticity. The objection from these context effects 

really does have bite, and probably compromises the modularity of any brain region that 

is vulnerable to their impact. I turn now to the second category of strong context effects. 

 

 The second category raises very serious doubts over the legitimacy of 

componential analysis, and so by implication practically all mainstream work in the 

cognitive sciences. The decompose-and-localize approach to cognition assumes that the 

mind can be understood on the analogy of a machine with working parts. Central to this 

approach is the belief that function can be explained in terms of “bottom-up additive 

contributions” rather than “top-down constraints that limit, change, or determine 

functional properties” (Anderson 2014, p. 308). Recent discoveries suggest this 

confidence may be misplaced, although quite to what extent remains unclear at this stage. 

The starkest illustration of these effects is offered by starburst amacrine cells (SAC) in 

the mammalian retina. These are axonless neurons with dendrites arranged radially 

around their cell body. “What is especially interesting about these cells is that the 
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dendrites are individually differentially sensitive to motion; they release neurotransmitter 

only in response to motion that is congruent with the direction the dendrite points away 

from the cell body” (Anderson 2014, pp. 92-93). It is tempting to think of each dendrite 

as a component because each appears to contribute uniquely and dissociably to effects at a 

higher network level. 

 

In fact, the directional selectivity of each dendrite is due in large part to the 
particular blend of connections these cells have to bipolar cells and other SACs 
such that responses in the congruent dendrites are reinforced while responses in 
noncongruent dendrites are inhibited. In other words the directional selectivity of 
the dendrite in a given situation is due not so much to intrinsic properties of that 
dendrite but to global properties of the network. Global function is not built from 
componential local function, but rather the reverse! (Anderson 2014, p. 93) 

 

While one could well think that the entire local network is itself a component, it should 

not come as a surprise if the very same dynamics “reproduce themselves at the higher 

level,” with the functional selectivity of whatever putative higher level component being 

determined again by global network properties rather than intrinsic local features. If these 

dynamics apply more generally to neural networks, the assumption behind componential 

analysis would be substantially undermined, for then no longer would components be 

“temporally and functionally stable subassemblies sitting on the tabletop waiting for final 

construction” (Anderson 2014, pp. 93-94). Instead the “functional organization of the 

whole” would be logically prior to the functionally parasitic part. Put another way, 

interactions between parts would be more important than the activity of parts (Anderson 

2014, p. 40). 

 

 Olaf Sporns has recently mooted similar ideas. The traditional way of thinking 

about circuits is in terms of “highly specific point-to-point interaction among circuit 

elements with each link transmitting very specific information, much like an electronic or 

logic circuit in a computer” (Sporns 2015, p. 92). On this account, the activity of the 

whole circuit is “fully determined by the sum total of these specific interactions,” with 

the corollary that “circuit function is fully decomposable…into neat sequences of causes 

and effects.” This is a Laplacian model of classical mechanics, “with circuit elements 

exerting purely local effects.” The modern approach from complexity theory and network 

science, however, emphasizes “that global outcomes are irreducible to simple localized 

causes, and that the functioning of the network as a whole transcends the functioning of 
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each of its individual elements.” As an example of an emergent network phenomenon 

Sporns takes neural synchronization, “the coordinated firing ‘in sync’ of large numbers of 

nerve cells” (Sporns 2015, p. 93). While this phenomenon clearly depends on elemental 

interactions and synaptic connections, “it is not attributable to any specific causal chain of 

interactions in a circuit model.” Rather, it is “the global outcome of many local events 

orchestrated by the network as a whole.” 

 

We can represent these varying degrees of modular specialization along a 

continuum running from A to E, each with the indicia represented in Table 1. Brain 

regions at or to the left of C, which marks the onset of weak context effects, will be 

sufficiently specialized to count as modular. Brain regions to the right of C, characterized 

by strong context effects, will not. Plasticity increases as one moves from A through D. A 

possible network architecture for types A, B, C and D is shown in Figure 5. 

 

So will modularity survive evidence of neural reuse, neuromodulation, and the 

very strongest effects of network context? On the one hand, and from a purely pragmatic 

standpoint, I think it would be premature to come down firmly on one side or the other of 

this question without first having more solid evidence about the causal properties of 

individual brain regions and how they contribute to overall cognitive function. Precisely 

how the causal properties of tiny brain regions facilitate more complex functions is not 

understood, so the analysis above is really offered as an informed best estimate rather than 

as a conclusive demonstration. In addition, it is worth remembering that at this stage the 

case for the very strongest of context effects is still speculative. Russell Poldrack, for his 

part—whose laboratory work in this space has been pioneering (e.g. Poldrack et al. 

2009)—is convinced that cognitive systems will bottom out in low-level, domain-general 

and functionally specific computational operations bearing a one-to-one relation to 

specific cortical sites. On the other hand, if neuromodulatory and context effects are 

indeed as pervasive and game-changing as some people seem to think (e.g. Bach-y-Rita 

2004), perhaps only a few scattered islands of modularity are all we can reasonably hope 

for (Prinz 2006). It is true that employing current techniques it is not actually possible to 

assign brain regions to definite locations on a continuum, so we cannot know for sure that 

only a few brain regions will cluster towards the specialist end (e.g. A through C above). 

But evidence for the existence, power and ubiquity of context effects can only proliferate 
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at this point, one would think. (Incidentally—taking up a point I raised in § 4.3—if the 

“modules” reaching into central cognition turn out to have type D characteristics, central 

cognition will be pro tanto nonmodular after all. See § 7.2.2 for further discussion.) 

 

Increasing plasticity 

 

 A 
 
Theoretical  
domain 
specificity 

B 
 
Strict 
domain 
specificity 

C 
 
Formal 
domain 
specificity 
 

 D 
 
Neuro-
modulation 

E 
 
Non- 
decomposition  

Indicia Minimal 
afferent 
connections 
 
Participation 
in a single 
task & 
composite 
within a 
single task 
category 
 
Nonreuse 
 
No context 
effects 
 
 
Functional 
specialization 

Few  
afferent 
connections 
 
Participation in 
various tasks & 
composites 
within a single 
task category 
 
 
 
Nonreuse 
 
Negligible 
context effects 
 
 
Functional 
specialization 

Many 
afferent 
connections 
 
Participation 
in various 
tasks & 
composites 
within 
various task 
categories 
 
Reuse 
 
Weak 
context 
effects 
 
Functional 
specialization 

Many  
afferent 
connections 
 
Participation 
in various 
tasks & 
composites 
within various 
task categories 
 
 
Reuse 
 
Dynamic local 
network states 
 
 
Functional 
differentiation 

⎯⎯ 
 
 
 

⎯⎯ 
 
 
 
 
 
 
 

⎯⎯ 
 
Local function 
fixed by global 
properties 
 
Functional 
differentiation 

Example Probably 
none—a 
theoretical 
postulate only 

Neural element 
common & 
exclusive to 
reading, writing 
& speaking,  
e.g. the  
neural basis of 
subjacency/wh-
movement (?) 

Extrastriate 
body area; 
Broca’s area 

Flexible 
“hubs” in the 
brain reported 
by Cole et al. 
(2013) 

Starburst 
amacrine cells; 
synchronization 

 

Table 1. A scale of specificity along with indicia of specificity for brain regions. 
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Figure 5. Possible network architecture for brain regions having the indicia of types A through D on the 
scale of specificity. Black circles indicate communication with other regions. Source: Petrov et al. 2010, p. 
286. 
 

 

It is worth mentioning that the picture here is consistent with the emerging 

consensus around the neocortical column we met in § 4.3 (Rockland 2010; see da Costa & 

Martin 2010 for a historical review). Rockland takes five defining features of the column 

and argues that these are too rigid to do justice to the complexity of cortical organization. 

For instance, it is supposed that columns are solid structures, but this is not quite true, 

since they have a heterogeneous substructure that “correlates with reports of locally 

heterogeneous response properties,” very much as reuse predicts (Rockland 2010, p. 3). 

Their anatomy is therefore messy rather than solid. Columns also form part of widely 

distributed networks at several levels (again much as reuse predicts), and for that matter 

are not even obligatory to cortex: for instance “comparative anatomy provides many 
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examples of cortex apparently without anatomical columns or dramatically modified 

columns,” e.g. whales and dolphins, whose insular cortices have cellular modules 

concentrated in layer II, and the giraffe whose occipital cortex has modules concentrated 

in the same layer (Rockland 2010, p. 7). 

 

I think it is fair to say, then, that while most of the cortex undoubtedly consists of 

module-like elements, probably only a few of these will in the end prove to be modular in 

the robust sense we require. The full implications of network thinking for componential 

analysis in particular have not sunk in, even though they promise to overturn our 

conception of local function almost completely. It goes without saying, of course, that to 

the extent that modules do exist, it will be as functionally exiguous and promiscuous 

network nodes. The days of classical modularity are well and truly over. 

 

5.2 CAN COMPOSITE SYSTEMS BE DISSOCIABLE? 

 

Up to this point in the discussion I have simply assumed that a cognitive system 

consisting of shared domain-general parts cannot be separately modifiable ipso facto. 

Some, however, have maintained that neural overlaps need not undermine the functional 

independence of high-level cognitive functions (Carruthers 2006, pp. 23-24). This is just 

to raise the possibility that high-level cognitive functions could persist as functional 

modules (as distinct from anatomical modules). For instance, it is undoubtedly true that 

of any two cognitive systems considered in isolation the extent of neural overlap may be 

only partial (or even negligible) (Fig. 6a). This would render the two systems dissociable 

vis-à-vis each other to the extent that a modification not affecting shared components 

would disrupt or improve the affected system independently. Moreover 

 

at the limit, two modules could share all of their processing parts while still 
remaining dissociable and separately modifiable. For the differences might lie 
entirely in the patterns of connectivity among the parts, in such a way that those 
connections could be separately disrupted or improved. (Carruthers 2010, p. 289) 

 

The plausibility of this suggestion diminishes the more one takes the message of neural 

reuse to heart. The evidence of reuse suggests that neural overlaps are a pervasive feature 

of cognitive systems, so the chances of true functional independence are going to be quite 

low (Fig. 6b). Taking high-level cognitive systems two at a time looks to be a futile 
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strategy. Once the true scale of reuse dawns, the claim that high-level cognitive functions 

may persist as functional modules appears far less convincing. And to be clear, my own 

wager is that reuse will be so pervasive that not only neural components but the various 

connections between them too will be extensively reused throughout the brain. 

 

    

                     

(a)            (b) 

 

Figure 6. (a) Partial overlap between the neural implementations of two cognitive systems. (b) Pervasive 
overlaps between the implementations of various cognitive systems. 
 

 

5.3 MODULAR NOTATION 

 

Perhaps the single most important upshot of the discussion so far has been that 

modularity can no longer serve in the role of marking a traditional high-level cognitive 

ontology. We have seen how modules (really “minimodules”) are both structurally and 

functionally exiguous, and so nowhere up to the job of supporting functions as complex 

as language taken by themselves. In this section I shall provide a simple notation to 

express at a glance the essential features of the new perspective I am advocating. It will 

serve as a convenient shorthand with which to convey some of the more important points 

relating to the search for a language module in Chapter 7. Thus let us take modules to be 

defined by the set 

 

{M1, M2, M3 … Mn} 
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Modules are really small networks of neurons, and can for convenience be labelled “M-

networks” (to distinguish them from the many higher level networks in which modules 

participate in turn). Thus a module can be defined by the set 

 

{N1, N2, N3 … Nn} 

 

where N denotes a neuron, so that a given module Ma will comprise a set of neurons 

 

Ma : {Na, Nb, Nc, …} 

 

An M-network is (or resembles) the structure which neuroscience variously terms a 

“module,” “column,” or “elementary processing unit,” and which Bergeron (2007; 2008), 

and Anderson (2010; 2015) originally, called a “working.” It consists of around 6000 

neurons or 60-80 minicolumns, each minicolumn consisting of between 80-100 neurons 

(Buxhoeveden & Casanova 2002, p. 935). The higher level functional composites in which 

modules participate are themselves networks (call them “C-networks”). We can take C-

networks to be defined by the set 

 

{C1, C2, C3 … Cn} 

 

so that a given C-network Ca will be a set of M-networks 

 

Ca : {Ma, Mb, Mc, …} 

 

I take M-networks and C-networks to be the central explananda of cognitive 

neuroscience. Given the rather drab prognosis with which I concluded § 5.1, we should 

expect to find only a smattering of real M-networks in the cortex, and that many of the 

structures which neuroscientists have identified as modules have been technically 

misdescribed. 

 

Over the years the attention of psychologists and cognitive scientists has quite 

understandably been lavished upon the functional taxonomies which C-networks serve to 

implement. But, as I have suggested several times already, the same scientists often 
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thought they were dealing with something having the structural characteristics of an M-

network. This was most unfortunate, and its ill-effects have by no means been eradicated. 

Such misconceptions necessarily inform both the design and interpretation of scientific 

experiments. The debate about whether the fusiform gyrus is specialized for faces, to take 

only one example, “has unfolded in the context of the shared belief that the ventral visual 

areas are specialized for recognizing some classes of objects,” a belief which is no longer 

tenable pending further notice (Gold & Roskies 2008, p. 354). 

 

To sum up, then, there are at least two networks of interest so far as the 

modularity of mind is concerned: the network of neurons which constitutes a node/M-

network, and the network of nodes which constitutes a composite of nodes/C-network. 

The former is what has come to be regarded as a module in mainstream neuroscience, 

while the latter is regarded as a module among those working with graphs in network 

neuroscience. This latter notion, as we saw, has obvious affinities with the mental 

modules familiar to cognitive scientists, psychologists and philosophers, since it seems to 

track quite readily the ontologies of traditional psychology (language, vision, face-

recognition, etc.). One cannot, however, assume that mental modules (Fodorian or 

otherwise) reduce smoothly to the communities of nodes that are studied extensively in 

graph theory (Anderson 2010, p. 303; 2014, p. 42). Quite apart from other differences, the 

classic Fodorian module is an anatomical module, and hence functionally dissociable and 

localized in relatively segregated neural tissue. This is not the case of graph-theoretic 

(network neuroscience) modules, as I explained earlier. If Fodor’s module has any 

legitimate successor at all, then, it must be something with relative stimulus specificity 

and informational autonomy—something with the functional characteristics of an M-

network. 

 

5.4 SUMMARY 

 

In Chapter 4 I argued that we ought to regard dissociability as the sine qua non of 

modularity. As for what in the brain actually meets this standard, the only likely 

candidate will be something resembling a cortical column. But this is not guaranteed. The 

effects of the neural network context may so compromise a region’s ability to maintain a 

set of stable input-output functions that it cannot be considered a genuine module. 



6 
_____ 

 

Are modules innate? 
 

 

 

 

 

 

6.1 PRELIMINARY REMARKS 

 

Asking whether modules are innate is problematic for three reasons. First, the argument 

and conclusion of the previous chapter suggests that the question is not a good one to 

begin with: we would do better to ask whether brain regions are innate. Second, there is 

the rather thorny issue of what one actually means by “innate.” Third, the question 

assumes that a general answer can be given, when it is unlikely that all (or even most) 

brain structures will have the same developmental story to tell: “there will be cases and 

cases” (Mameli & Papineau 2006, p. 564). This last concern can be alleviated by 

concentrating the weight of one’s empirical attention on a particular module, if not by 

having regard to as much brain-wide evidence as possible. Chapter 2 is my attempt to 

incorporate a wide survey of the evidence of neuroplasticity—with as many caveats and 

limiting clauses as its interpretation reasonably warrants—while Chapter 7 is my attempt 

to home in on one particular system (namely language). In the present chapter I aim to 

build on the interpretation of neuroplasticity that I began in Chapter 2. 

 

 This still of course leaves us with the problem of having to define what we mean 

by innateness, a far from trivial matter (Griffiths 2002; Mameli & Bateson 2006; Bateson 

& Mameli 2007; Mameli & Bateson 2011). The trouble is that the term is as ambiguous as 

it is entrenched, and some have wondered whether it can perform a useful function in the 

sciences at all. With so large a variety of distinct notions lying beneath the surface, it 

becomes very easy to commit fallacies of ambiguity (Griffiths et al. 2009). One might for 
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example infer that a trait is species typical in virtue of its being the product of natural 

selection, or developmentally fixed in virtue of its being species typical (O’Neill 2015). In 

the result Griffiths (2002) recommends having done with the term altogether, and 

suggests that scientists should specify explicitly what they mean on any given occasion. I 

do not take an eliminativist stance myself, but, along with Griffiths, do think it absolutely 

essential to make explicit the sense in which the term is being used. Following O’Neill 

(2015), what I have in mind is insensitivity relative to some specific set of environmental 

variations. This is the idea of developmental robustness or environmental canalization 

broadly speaking (Ariew 1996; 1999; 2007; Mameli & Bateson 2006; O’Neill 2015), except 

that it is explicitly relativized to specific environmental factors (Bateson & Mameli 2007, 

p. 823).1 After all, no trait is developmentally robust in an absolute sense, and yet the 

claim is frequently made without specifying the environmental factors with respect to 

which the trait is supposed to be robust. For the most part this is not a problem, since it is 

usually clear in a given context which environmental factors are relevant (O’Neill 2015, p. 

212). Still it is important to bear in mind that a trait’s invariance (or otherwise) is always 

relative. In the present context, we are concerned with the innateness of modules—

iterated cortical structures with distinctive columnar and laminar patterns of 

organization. It should by now be clear that modules are not insensitive with respect to 

such experiences as learning, injury and sensory deprivation, regardless of how young or 

mature the organism happens to be. The extent of both intramodal and crossmodal 

plasticity, as well as evidence for the extensive rewiring of latent supramodal connection 

channels, does much to discredit the traditional nativist assumption of “hardwired” 

cognitive capacities with rigid developmental schedules (Marcus 2004). 

 

And yet this cannot be the full story. For one thing, sensitivity with respect to a 

particular set of environmental factors does not entail sensitivity with respect to others; 

and in the absence of factors to which a trait is sensitive, its development might well be 

considered robust. For instance, when developmental biologists speak of “activity-

independent” cell differentiation, which results in cortical areas acquiring fixed structural 
																																																								
1 I say broadly speaking because strictly speaking canalization results in a “buffered” developmental 
pathway in which insensitivity with respect to some environmental factor is the result of a specific 
mechanism or evolutionary adaptation geared to that end (e.g. Waddington 1953; 1955). But insensitivity 
simpliciter can be the result of an environmental factor’s having no causal influence on a trait at all. A fly’s 
wing pattern could be insensitive to certain pesticides without having been buffered against them by natural 
selection, e.g. because the pesticides concerned do not interact causally with the fly’s development in any 
way (O’Neill 2015). 
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characteristics in utero, they can be taken to imply that at least some aspects of modular 

development are insensitive relative to certain factors, although obviously not with 

respect to those factors which can be expected to become influential at a later stage of 

development, i.e. during postnatal “activity-dependent” cell differentiation (Saitoe & 

Tully 2001, p. 193; Kolb et al. 2001, p. 225; Sanes & Jessell 2013, p. 1259).2 Furthermore, 

sensitivity admits of degrees (Collins 2005). Granted that cortical development is robust 

in certain respects, how robust is an important question in each case. Thus there are 

really two senses in which we can speak of invariance as being a matter of degree: along 

one dimension, we can say that the more factors with respect to which a trait is robust, 

the more invariant it will be; while along a second dimension, the more a trait is robust to 

variation in any single factor, the more invariant it will be (Griffiths & Machery 2008, p. 

399). One may therefore legitimately inquire as to whether cell differentiation results in a 

stereotyped but essentially crude pattern of synaptic connections and brain regions before 

birth, or whether it results in more robust operations that limit and constrain the 

functions these regions can later take on. There is scope for genuine disagreement here 

between those who think there is a lot of prewiring, combined with some inevitable 

rewiring during development (Marcus 2004), and those who think there is comparatively 

little prewiring, with a lot of rewiring during development and later life (see the 

discussion by Mameli & Papineau 2006, pp. 563-564). 

 

In this chapter I shall argue that the evidence of neuroplasticity supports neither a 

traditional nativist nor yet strictly antinativist interpretation of development. Rather, we 

seem to be confronting a phenomenon that falls somewhere midway between the two 

extremes of developmental hardwiring and original equipotentiality. While the extent of 

the neuroplastic responses we considered in Chapter 2 is undoubtedly impressive, and 

sometimes vast, a closer look at these cases suggests that the pattern of responses is 

constrained. For all their plasticity, brain modules and regions appear to be significantly 

robust in the presence of such environmental variables as learning, injury and sensory 

deprivation. More precisely, the changes that do occur are exactly what one would expect 

to find on the assumption that cortical regions have robust processing capabilities and 

clear input preferences (what I earlier described as a “bias”). This is not a traditional 

																																																								
2 Moreover, a trait’s sensitivity with respect to a set of experiences at one stage of development does not 
preclude its being insensitive with respect to the same experiences at an earlier stage (Kolb et al. 2001, pp. 
223, 225; Mameli & Bateson 2006, p. 169; see also § 2.3). 
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nativist picture, to be sure, but neither is it antinativist. (Warning: the evidence to follow 

is circumstantial, the argumentation nondemonstrative and abductive. In the realm of 

cognition, however, we frequently find ourselves with little else to go on.) 

 

6.2 IMPLICATIONS OF NEUROPLASTICITY 

 

Of all the instances of cortical map plasticity we reviewed in Chapter 2, undoubtedly the 

most impressive involve crossmodal changes in which brain regions deprived of their 

typical inputs come to subserve alternative uses. One example I mentioned there 

concerned early blind Braille readers whose visual cortex appears to be functionally 

important for Braille character identification, suggesting a functional contribution of the 

reorganized occipital cortices during complex tactile discrimination tasks (Sadato et al. 

1996). Moreover, when repetitive transcranial magnetic stimulation (rTMS) is used to 

impair the functioning of the occipital cortex, blind subjects appear to have difficulty 

performing embossed character recognition, while sighted control subjects do not, again 

pointing up the functional significance of early blind occipital cortices during tactile 

discrimination (Cohen et al. 1997). Probably the most famous case of crossmodal 

plasticity is that of the rewired ferrets whose visual cortex was induced to project into 

auditory cortex after their retinal nerves were rerouted so that instead of feeding into 

primary visual cortex, they fed into primary auditory cortex via the auditory thalamus 

(Sharma et al. 2000; Melchner et al. 2000). The manipulation resulted in ferret auditory 

cortex taking on features typical of occipital cortex, such as columnar orientation and 

stimulus selectivity. Besides these cases, language studies suggest that this sort of 

plasticity is not confined to sensory-motor cortices alone, as the case of EB discussed in 

Chapter 2 illustrates very well. 

 

 While these results seem quite dramatic, nevertheless some aspects of the 

evidence do not sit well with the idea of the brain as open-endedly malleable. In fact, 

rather than supporting the case for plasticity tout court, these results argue the case for 

what Laurence and Margolis (2015) call “constrained plasticity.” Take the ferret case. 

The clear suggestion here is that auditory cortex came to resemble the processing 

structures typically associated with occipital cortex. And indeed to some extent this is 

what seems to have happened. But in fact primary occipital cortex is a complicated 
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structure, “connected to a large number of distinct brain regions that support further 

specific types of visual processing, including computations responsible for downstream 

representations of location, direction of motion, speed, shape, and so on” (Laurence & 

Margolis 2015, p. 127). And there is no evidence that any of this complex processing 

structure was reproduced, for “the overall wiring of the ferrets’ auditory cortex was 

largely unchanged.” One interpretation of why a “largely unchanged” auditory cortex was 

able to process visual inputs is consonant with the theory of supramodal organization (and 

Pascual-Leone and Hamilton’s metamodal hypothesis). Recall that this theory posits a 

large number of intrinsically stable neural operators that are more or less suited to 

processing specific types of input, but which are at the same time metamodal in that they 

receive inputs from many domains (i.e. they are really domain-general, or formally 

domain-specific). From this perspective, we would naturally expect there to be something 

about visual and auditory stimuli that makes them ideal for a neural operator whose 

processing disposition makes it suited to process one or the other of these specific types of 

input. Bregman and Pinker (1978) long ago postulated high-level analogies in 

computations which involve auditory and visual stimuli (e.g. different pitches are 

analogous to different locations, pronounced changes of pitch are analogous to sudden 

changes in the direction of motion, etc.). If such analogies between hearing and vision 

hold, it would suggest—consistently with the metamodal hypothesis—that auditory 

cortex did not really need to change when it began to receive inputs from a domain to 

which its processing capabilities were already well suited. As Laurence and Margolis 

interpret the ferret case: 

 

even though the rewiring experiments show that the auditory cortex can be 
recruited for a certain amount of visual processing, this is because the auditory 
cortex and the visual cortex overlap in the types of computations they naturally 
support. Far from being a model case of the environment instructing an 
equipotential cortex, [the ferret] rewiring experiments illustrate the way in which 
cortical structure and function remain largely unchanged even in the extreme case 
of input coming from a different sensory system. (2015, p. 128) 

 

Next consider the case of EB from Chapter 2. EB recovered most of his language skills 

two years after undergoing a left hemispherectomy at the age of two and a half and tested 

as largely normal with respect to language at age fourteen, albeit with his language faculty 

now subserved by regions in his right cerebral hemisphere. Surely this argues for an 

almost equipotential cortex early in development, if anything does? Not quite. The fMRI 
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evidence shows that the pattern of activation in his right hemisphere is almost isomorphic 

to that of the left hemisphere in normal control subjects, revealing a definite and 

predictable cortical pattern. Language did not arbitrarily migrate to a new location: it 

moved to the very site in the right hemisphere whose structural features most nearly 

resemble those of the left hemisphere’s language circuits. A truly equipotential brain 

would presumably reconfigure cortical sites selected on a far more ad hoc basis. The most 

important take-home message here, then, is not that the brain is open-endedly plastic, but 

rather that “the brain’s two hemispheres incorporate a large measure of potential 

redundancy of function that can be exploited at certain stages of development” (Laurence 

& Margolis 2015, p. 126; see also Jungé & Dennett 2010, p. 278; Barrett & Kurzban 2006, 

pp. 638-639; § 7.5). 

 

 These cases are only a beginning. By far the most significant evidence for 

constrained plasticity and the robust development of brain regions comes from studies 

revealing the brain’s latent supramodal organization. A flavour of this evidence was given 

in § 2.4.3, but it is instructive to consider a few more examples to drive the point home. It 

will be remembered that evidence of supramodal organization first came from studies of 

the two major visual processing streams, i.e. the dorsal (“where”) path for space and 

motion discrimination, and the ventral (“what”) path for object and shape recognition. 

What these studies suggest is that this dual stream processing structure persists with the 

same functional role and structural characteristics in both early and congenitally blind 

and sighted subjects. That is to say even total and protracted visual input inhibition—

from the very earliest developmental stages onwards—appears to have few if any adverse 

effects on the development of typical visual processing structures in humans. To repeat 

the conclusion one researcher drew from the case we examined in Chapter 2, “despite the 

vast plasticity of the cortex to process other sensory inputs” these findings suggest 

“retention of functional specialization in this same region” (Striem-Amit & Amedi 2014, 

p. 4). The dorsal and ventral processing streams appear to be modular, developmentally 

constrained and functionally preserved despite complete early and congenital visual 

impairment. 

 

 In one study (Renier et al. 2010), early blind subjects were presented with paired 

auditory stimuli that differed either in type (in this case, different piano chords) or 
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locality.3 The task required subjects to indicate whether the pairings were of the same 

type or emanated from the same location. Subjects exhibited differential activation in a 

region of the dorsal visual stream—specifically, the area rostral to the right middle 

occipital gyrus (MOG)—when engaged in the auditory spatial location task relative to the 

sound-type identification task. Similar results were obtained on an analogous tactile 

discrimination task using the same subjects. So while the MOG is clearly plastic, in that 

early blind individuals recruit this area more intensively for auditory and tactile 

discrimination tasks than sighted individuals, its plasticity reveals it to be functionally 

constrained and structurally preserved. It is classically supramodal in that it continues to 

perform a fixed computation despite receiving different sensory input. Other studies 

attest to the persistence of the spatial location function of the dorsal visual stream. 

Consider the posterior parietal cortex (PPC), implicated in the spatial representations that 

guide action. In healthy sighted subjects, caudal subregions play a relatively larger role in 

reaching and grasping than rostral subregions, which are primarily engaged in the 

planning and execution of action. Lingnau et al. (2014) showed that the same response 

gradient occurs in the congenitally blind, concluding that “neural plasticity acts within a 

relatively rigid framework of predetermined functional specialization” (2014, p. 547). 

Other studies evidence preservation of the direction representation function of the dorsal 

visual stream as judged by performance of congenitally blind subjects on analogous 

auditory discrimination tasks (Wolbers et al. 2011), as well as functions in the ventral 

visual stream in both congenitally blind and blindfolded sighted subjects (as we saw in 

Chapter 2) (Striem-Amit et al. 2012; Striem-Amit & Amedi 2014). Laurence and 

Margolis  conclude their review of this evidence in the following way:  

 

it would appear that the large-scale functional architecture of the visual cortex—
the division of labor between the dorsal and ventral streams—develops in much 
the same way, and with the same functions being performed in various subregions 
of these streams, with or without visual experience. (2015, p. 133) 

 

And of course all of this evidence once again testifies to the supramodal organization of 

the brain, and Pascual-Leone and Hamilton’s metamodal hypothesis in particular, since it 

is consistent with a brain that is composed of a number of “distinct computational 

systems whose functions are established independently of their sensory input” (Laurence 

																																																								
3 The examples in this paragraph and the next are drawn from Laurence and Margolis (2015). 



 103 

& Margolis, p. 428) and in which “multimodal sensory inputs feed into all cortical 

regions” (Pascual-Leone & Hamilton 2001, p. 432), even though the operations of a given 

region will dictate certain preferences. The metamodal hypothesis predicts that “when 

the preferred input is unavailable, the brain switches to the next best fit” (Laurence & 

Margolis, p. 428) such that a region’s underlying computational structure and profile 

need undergo no truly radical alteration in the face of new processing inputs—in the 

standard case it will perform in much the same way it always did, albeit on a new set of 

afferents. On this view, even many dramatic instances of crossmodal plasticity, where the 

equipotential nature of the cortex seems to be its most obvious feature, need involve little 

more than a straightforward remodeling of supramodal connection channels (Pascual-

Leone & Hamilton 2001, p. 443). 

 

 One final study is especially worth mentioning for the illumination it provides on 

the precise extent to which predefined cortical functionality is developmentally robust. A 

group of mice whose brains were genetically modified so that they were incapable of 

synaptic transmission, and therefore incapable of releasing any neurotransmitters at all, 

were compared to normal control littermates. Mice in whom the potential for all synaptic 

transmission has been inhibited in this way have effectively no potential for learning or 

indeed any activity-dependent cell differentiation. Verhage et al. (2000) reported that, at 

least prior to birth, the two brain types were assembled correctly, and were in fact 

essentially similar. As they state their own findings:  

 

Neuronal proliferation, migration and differentiation into specific brain areas 
were unaffected. At [embryonic day 12], brains from null mutant and control 
littermates were morphologically indistinguishable….At birth, late-forming brain 
areas such as the neocortex appeared identical in null mutant and control 
littermates, including a distinctive segregation of neurons into cortical 
layers….Furthermore, fiber pathways were targeted correctly in null mutants. 
(2000, p. 866) 

 

This means activity-independent changes are robust enough to withstand severe synaptic 

privation, and “that many features of even the fine-grained structure of the brain can 

develop without any sensory input or feedback” (Laurence & Margolis 2015, p. 130). 

 

 Notice, incidentally, just what this sort of neuroconstructivist nativism implies: 

that while there is a certain (and relative) sense in which M-networks and other 
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functionally significant brain regions are innate or robust, the same cannot be said for 

high-level cognitive functions. There is a weak sense, of course, in which the innateness 

of M-networks translates to the innateness of high-level functional composites, which are 

innate insofar as the parts used in assembling them are innate. But this claim is different 

from the claim that such higher level composites are innate as organized (Jusczyk & 

Cohen 1985). If the “derived” innateness of a functional composite were sufficient for its 

being considered innate as an organized ensemble, all complex cognitive functions would 

be innate by default, which is plainly absurd. I shall revisit this matter in Chapter 6. 

 

Before I leave this chapter, it will be useful delineating once again the relationship 

between neuroplasticity (qua Hebbian learning) and neural reuse, for there is a good deal 

of complementarity on offer here that is easy to miss amid the detail of specific cases. The 

supramodally organized brain in effect constitutes the architectural foundation upon 

which Hebbian synaptic mechanisms operate. That is to say, Hebbian plasticity 

presupposes reuse, inasmuch as it consists in the strengthening (or weakening) of existing 

supramodal connection channels. Synaptic pruning, synaptogenesis and other forms of 

interneural transmission can no doubt account for the more drastic examples of plastic 

change and postpathological recovery we examined in Chapter 2 (yielding “a change in 

use from a change in working,” in the language of Chapter 3), perhaps joining a suite of 

mechanisms that could account for the very youngest cortico-cortical pathways 

established in the developing brain (in effect supplying us with a supramodal 

architectural foundation).4 But Hebbian mechanisms remain an important part of the 

story of how patterns of neural reuse are regularly refined and remodeled in the course of 

normal development, learning and recovery after injury (yielding “a change in use 

without a change in working,” as we saw in Chapter 3). 

 

6.3 SUMMARY 

 

The brain’s plasticity is definitely constrained. While plasticity is an intrinsic and crucial 

feature of the nervous system, it is important to emphasize that the brain is not open-

endedly plastic. Furthermore a brain region can be innate in a relatively strong sense and 

																																																								
4 Anderson (2014) hypothesizes such a suite of mechanisms under the label “search.” I return to this idea in 
Chapter 7, with a twist of my own. 
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yet fail to reach the threshold characteristics of a genuine module. A bias, after all, is not a 

specialization. 
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7 
_____ 

 

The language module reconsidered 
 

 

 

 

 

 

7.1 PRELIMINARY REMARKS 

 

The contention that language is domain-dedicated and innate is as much a claim about 

cerebral organization as it is about function. My aim in this chapter is to extend the 

framework provided so far by offering an account of how language could be implemented 

in brains in a way that honours its autonomy, developmental robustness and connection 

to other domains. Any examination of the relevant literature will quickly dispel the 

illusion that there can be certainty in a field like this, at least for the present. But there is 

more than enough evidence, I think, to make the prospects of some proposals doubtful 

enough to warrant serious skepticism—in particular, the claim that language is subserved 

by hardwired and dedicated neural circuitry—and enough evidence, too, to provide the 

basis for a sensible if only tentative conception of neurolinguistic organization. Because all 

such proposals to date (no matter how vigourously and at times dogmatically defended) 

have been advanced in a spirit of scientific speculation, my own, of course, will be no 

different. I intend my thoughts on the subject to count as one further effort in the 

ongoing attempt to render plausible how something with the particular characteristics of 

language could be implemented in a domain-general architecture. The need for such a 

project to succeed has become urgent, in my view, precisely because the alternative is too 

much at odds with what we do know about the brain. Short of compelling reasons to the 

contrary, a theory of cognitive architecture should strive to be consistent with as much of 

the hard evidence that we have at our disposal, be it neural, psycholinguistic, 
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developmental, evolutionary or computational. But domain-specific accounts of the 

functional architecture of language can no longer assert that they meet this desideratum. 

 

I should note that while the framework of reuse I have adopted in the thesis so far 

will continue to do work for me in the present context, I shall at this juncture have to part 

company with Anderson and other proponents of reuse. After much reflection, I have 

come around to the view that neural redundancy should be assigned a much more 

prominent role within theories of cognitive architecture than most proponents of neural 

reuse—and indeed cognitive scientists generally—seem willing to do. It strikes me that in 

view of how simple and powerful the principle is, it is a wonder that more has not been 

said about it. To my mind it is a significant omission, although happily one which if 

remedied can go a long way towards reconciling the evidence of linguistic modularization 

and neural reuse. I introduce what I call “the Redundancy Model” in § 7.5. 

 

The chapter proceeds as follows. First up, we need to get a little more clarity on 

the very idea of a language module. What are we looking for? What does it mean to say 

that language is modular, or represents a cognitive specialization? Any answer 

presupposes some conception of the language domain as a psychological phenomenon, as 

well as some conception of specialization at the level of implementation. Regarding the 

second issue I should think I have already said enough, so even though I rehearse a couple 

of competing conceptions below, I do not intend to modify the position that has sustained 

the investigation thus far. Regarding the first issue, however, I have so far said very little. 

The two most influential conceptions of the language domain are those associated with 

the linguist Noam Chomsky and the philosopher Jerry Fodor. While it would not be 

wrong to see these two thinkers as belonging to the same broad school of thought, their 

conceptions of language—of what it is we should be looking for within a language 

module—are very different. The evidence I adduce raises problems for any defender of 

linguistic modularity, no matter where they fall on the Chomsky-Fodor spectrum. 

 

 Next I survey evidence of the extensive reuse of language circuits across various 

cognitive domains. This evidence speaks loudest against the conventional wisdom 

concerning a dedicated faculty of language, and converging evidence from other sources 

corroborates this view. At the level of implementation, then, it seems language is not 
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special vis-à-vis other cognitive domains. But this then raises the old question about the 

robustness of language acquisition in children. The evidence of a “poverty of stimulus” 

continues to baffle many researches across the cognitive sciences, and is the main 

motivation behind the persistent and (still) pervasive conviction that language must after 

all be special. The section following therefore addresses the poverty of stimulus issue, but 

in a spirit rather different to that which has been typical in discussions of linguistic 

nativism. Instead of throwing mud at the poverty of stimulus argument in the hope that 

some of it sticks (some of it certainly does, but enough people have thrown it for me to 

feel justified in moving on), I consider how a fairly robust species trait like language can 

be supported within a thoroughly domain-general framework. To cap off, I parlay 

everything canvassed in the discussion up to this point into a general outline of how 

language could be implemented in the brain so that its autonomy and apparent 

dissociability may be fully accommodated alongside the evidence of its reuse and relative 

ontogenetic robustness. Here the Redundancy Model comes to the fore. 

 

As I pointed out earlier, the principle of redundancy has received scant attention 

in the philosophical and cognitive neuroscience literature. The basic idea here is that, no 

doubt for good evolutionary reasons, the brain incorporates a large measure of 

redundancy of function (I suggested as much during my discussion of neuroplasticity: see 

§ 6.2). We do not seem to exhibit what has been referred to as modular solitarity—a single 

token module for each type of module that we possess.1 Instead we come equipped with 

very many tokens of the same type of module or brain region densely packed into 

contiguous regions of cortex. I submit that this fact can account for a lot of what we see 

when we examine the evidence of cognitive dissociations. More importantly, it can 

provide an elegant and simple solution to the engineering problem posed by the fact that 

many of our psychological faculties (speech, problem-solving, playing musical 

instruments, etc.) seem to require multiple simultaneous use of the same sorts of 

underlying cognitive mechanisms (the time-sharing problem). There is also evidence that 

quite often the same sorts of mechanisms are recruited for deliberative “central system” 

functions on the one hand and fast/automatic or “peripheral” functions on the other. 

This is puzzling because the degree of cognitive impenetrability involved plausibly calls 

for segregated circuitry (the encapsulation problem). Redundancy naturally explains the 

																																																								
1 The term “solitarity” is a neologism. See § 7.5. 
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data here too. In fact for all we know redundancy might help to explain many other quirks 

of cognition that have so far proved elusive within classical cognitive science paradigms, 

hostile as they often have been to implementational considerations. The same solution 

could suffice to solve several problems. 

 

A good chunk of the evidence of reuse comes from neuroimaging data, but as I 

already indicated in Chapter 3, concerns over the spatial resolution of current imaging 

technologies have been played as a possible trump card against the idea of the literal reuse 

of neural circuits. While neuroimaging evidence is not the only evidence on point, and 

converging biobehavioural evidence also points to the extensive redeployment of the self-

same neural technology, still the likelihood of some cognitive mechanisms running in 

parallel and in close spatial proximity cannot be discounted, and indeed seems rather high 

given what we know of the iterative, tessellated and almost lattice-like arrangement of 

modules in the cortex. The Redundancy Model beautifully supplements and extends the 

reuse picture in a way that is completely consistent with the neuroimaging data, faithful 

to the core principle of reuse, and compatible with the apparent modularization of 

technical and acquired skills in ontogeny. As I shall explain—and in keeping with the 

constrained plasticity model I presented in Chapter 6—it chimes with the motto that 

some modules are “made, not born,” but without crude assumptions about the near 

limitless malleability of cortical tissue. In sum, it gives us just what we need to explain a 

(mini)modular yet fully domain-general cognitive system within a sensible and 

neurobiologically informed framework of explanation. 

 

7.2 DEFINING A LANGUAGE MODULE 

 

7.2.1 The meaning of linguistic specialization 

 

There is a clear consensus in modern neuroscience that language is mediated by “defined 

sets of circuits” (Fisher 2015, pp. 150-151). The main debate over these circuits concerns 

whether they are specific to language (Chomsky 2005; 2010). In Chapter 3 I raised the 

possibility that, despite extensive evidence of the reuse of neural circuits and what 

appears to be the deeply interpenetrative nature of mental functions, some small 

component or set of components is rarely coopted outside the language domain. Such a 
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component (or set thereof) would be strictly specialized for language in its being recruited 

predominantly, perhaps even exclusively, for linguistic purposes. By way of example I 

mentioned the possibility of a neuron or restricted set of neurons being dedicated to 

conjugating the verb “to be” and having no nonlinguistic functions at all (other examples 

are discussed in § 7.2.3 below). I said that this component might aptly be described as a 

language “module.” The debate over the specialization of linguistic function, then, can be 

understood as a debate concerning the existence of such modules (Fedorenko & 

Thompson-Schill 2014). It is an important question in its own right, of course (cf. Fitch 

2010), but carries further implications for other inquiries into the human cognitive 

system, as well as for the evolution of language. Among the various alternative ways of 

construing the issue (as to which see below), this is the understanding with which I shall 

proceed here. Let me, however, define the problem more precisely before I turn to 

address it directly in the following sections of this chapter. 

 

 So far we have seen how the evidence of neural reuse strongly suggests that the 

only dissociable unit we are likely to encounter in the brain will be one that resembles the 

neuroscientific notion of a module. The neuroscientific module is sometimes called a 

“brain module” or “cortical module” (Mountcastle 1978; 1997; Pascual-Leone & 

Hamilton 2001; Gold & Roskies 2008; Rowland & Moser 2014; Zador 2015), other times a 

“cortical column” or “columnar module” (Mountcastle 1978; 1997; Buxhoeveden & 

Casanova 2002; Amaral & Strick 2013; Zador 2015), still at other times an “elementary 

processing unit” (Kandel & Hudspeth 2013), or simply an “operator” (Pascual-Leone & 

Hamilton 2001; Pascual-Leone et al. 2005). It corresponds roughly with the node of a 

neural coactivation graph, and is known to perform only exiguous subfunctions such as 

aspects of edge detection or depth discrimination—certainly nothing as high-order as 

language acquisition or norm acquisition per se. High order complex functions are instead 

enabled by neural ensembles or composites, which are just so many arrangements of these 

low-level neural modules, often highly distributed across the cortex (and so not localized, 

contrary to much traditional speculation). But we also saw that, owing to the effects of the 

many different neural contexts in which modules appear (namely the functional 

assemblies instantiating high-level complex functions), it is not clear that such units will 

always possess the requisite degree of specialization required to sustain their modularity: 

in many cases the label “module” may actually be a misnomer. The true extent of 
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modularity in the cortex—even with the benefit of a neuroscientifically informed 

conception to hand—is very much an open question. As a way of getting to grips with 

this issue, in Chapter 5 I provided a scale of specificity for brain regions which makes 

their indicia of specificity explicit. I reproduce the features of these brain regions below 

for convenience. Situating the question of the modularity of language within this 

framework sharpens the issue considerably and shows up useful points of contrast with 

alternative construals. Varying degrees of modular specialization can be represented along 

a continuum running from A to E, each with the indicia as specified below (Table 1). 

Brain regions at or to the left of C, which marks the onset of weak context effects, will be 

sufficiently specialized to count as modular. Brain regions to the right of C, characterized 

by strong context effects, will not. Again, plasticity increases as one moves from A 

through D. 

 

The search for a language module may be construed as a search for a type B 

module. Let us call such a type B language module an “elementary linguistic unit,” or 

“ELU.” It will also be remembered that in § 5.3 I provided a notation to describe the 

entities in view here. A true module (any of types A through C) is a certain sort of 

network of neurons, which I called an “M-network” (for convenience we may regard all 

of the types A through E as M-networks even though the paradigm cases encompass only 

A through C). A “C-network” is the composite structure which brings the several 

modules implicated in a high-level complex function into coalition. Language as a high-

level psychological capacity is mediated by a restricted class of C-networks (e.g. a speech 

comprehension network, a speech production network, etc.). This much is beyond 

dispute. The proponent of a language module needs to show in addition that at least one 

of these language C-networks’ constituents is an ELU. Indeed the traditional claim is 

more ambitious, with theorists maintaining that there is in effect a large M-network that 

handles core aspects of language—a super-sized ELU, as it were—such as Chomsky’s 

Merge or Fodor’s sentence parser (see below) (Chomsky 1980a, pp. 39, 44; 1988, p. 159; 

2002, pp. 84-86; Fodor 1983; Plaut 1995; Pinker & Jackendoff 2005, p. 207; Fitch et al. 

2005, p. 182; Collins 2008, p. 155; Fedorenko & Thompson-Schill 2014). The argument 

of the present chapter is that there are unlikely to be any ELU’s—that the only units we 

are likely to find among the constituents of our language C-networks are M-networks of 

the types C through E. 
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Increasing plasticity 

 

 A 
 
Theoretical  
domain 
specificity 

B 
 
Strict 
domain 
specificity 

C 
 
Formal 
domain 
specificity 
 

 D 
 
Neuro-
modulation 

E 
 
Non- 
decomposition  

Indicia Minimal 
afferent 
connections 
 
Participation 
in a single 
task & 
composite 
within a 
single task 
category 
 
Nonreuse 
 
No context 
effects 
 
 
Functional 
specialization 

Few  
afferent 
connections 
 
Participation in 
various tasks & 
composites 
within a single 
task category 
 
 
 
Nonreuse 
 
Negligible 
context effects 
 
 
Functional 
specialization 

Many 
afferent 
connections 
 
Participation 
in various 
tasks & 
composites 
within 
various task 
categories 
 
Reuse 
 
Weak 
context 
effects 
 
Functional 
specialization 

Many  
afferent 
connections 
 
Participation 
in various 
tasks & 
composites 
within various 
task categories 
 
 
Reuse 
 
Dynamic local 
network states 
 
 
Functional 
differentiation 

⎯⎯ 
 
 
 

⎯⎯ 
 
 
 
 
 
 
 

⎯⎯ 
 
Local function 
fixed by global 
properties 
 
Functional 
differentiation 

Example Probably 
none—a 
theoretical 
postulate only 

Neural element 
common & 
exclusive to 
reading, writing 
& speaking,  
e.g. the  
neural basis of 
subjacency/wh-
movement (?) 

Extrastriate 
body area; 
Broca’s area 

Flexible 
“hubs” in the 
brain reported 
by Cole et al. 
(2013) 

Starburst 
amacrine cells; 
synchronization 

 

Table 1. A scale of specificity along with indicia of specificity for brain regions. 

 

 

 Now it may seem that this construal of the matter is austere, and that I have set a 

most demanding test for the modularity of language. Other ways of understanding 

linguistic modularization have occasionally been discussed. The neurolinguists Evelina 

Fedorenko and Sharon Thompson-Schill (2014), for example, outline three, the first two 
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of which I shall mention here. The first is the more or less conventional one I have just 

described which looks for an ELU. As they put it, “a network may be functionally 

specialized for mental process x if all of its nodes are functionally specialized for x, [but] 

perhaps the presence of at least one functionally specialized node is sufficient to qualify 

the whole network as functionally specialized” (2014, p. 121). On this view even a single 

ELU would suffice as evidence of the specialization of language. Obviously I have no 

argument with this approach. The second approach, on the other hand, would count as 

specialized any system whose pattern of interconnections between nodes is unique to the 

function the system performs: 

 

In this approach, the properties of the nodes are less important; they may be 
functionally specialized, domain general, or a mixture of the two. What matters is 
whether a unique combination of nodes and edges is recruited for the relevant 
mental process x. If so, such a network would be considered functionally 
specialized for x, even if all of the individual nodes are domain general…and even 
the same exact combination of nodes can contribute differently to different mental 
processes when the nodes are characterized by different patterns of connection. 
(2014, p. 121) 

 

On this much more liberal view, language is specialized if the patterns of connections that 

characterize its C-networks are unique to those networks, notwithstanding that the same 

(indeed even the very same) nodes are recruited beyond the language domain, provided 

that the wiring patterns are distinctive in each case. Now I should think no one would 

deny the importance of network configurations when explaining cognitive function, or 

that there are occasions when our attention is properly captured by the dynamics of 

distinct (yes, specialized) networks; but it would surely surprise no one apart from a holist 

that the brain enters into a different state whenever it switches between tasks. Systems 

specialized in this sense lack the stability and permanence that provide the sort of 

specialization likely to be of interest to those in search of a language module. What has 

predominantly mattered to these researchers is just the extent to which mental processes 

like language rely on dedicated mechanisms and specific computations.  

 

John Collins, for instance (a philosopher and noted defender of generative 

linguistics), conjectures that “the peculiar specificity of language deficits suggests that the 

realization of language is found in dedicated circuitry, as opposed to more general levels 

of organization” (Collins 2008, p. 155). Chomsky himself has written that “It would be 
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surprising indeed if we were to find that the principles governing [linguistic] phenomena 

are operative in other cognitive systems….[T]here is good reason to suppose that the 

functioning of the language faculty is guided by special principles specific to this domain” 

(Chomsky 1980a, p. 44). Barely a decade later he wrote that “[i]t would be astonishing if 

we were to discover that the constituent elements of the language faculty enter crucially 

in other domains” (Chomsky 1988, p. 159). Many commentators (e.g. Goldberg 2003; 

Pinker & Jackendoff 2005) frequently assume that Chomsky has relented in his stridency 

concerning this requirement, but in fact he has continued to hold out for the potential 

vindication of “earlier versions of generative grammar” in this regard (see e.g. Fitch et al. 

2005, p. 182 and the ambivalent remarks in Chomsky 2010, p. 53; Berwick & Chomsky 

2016, p. 91; Chomsky, personal communication). Besides, despite the abstractness of the 

Minimalist Program—which simplifies the idealization to language in the interests of 

evolutionary tractability—Chomsky  has continued to write of a “language organ” that is 

“analogous to the heart or the visual system or the system of motor coordination and 

planning,” commenting approvingly of the view which regards specialized learning 

mechanisms as “organs within the brain” that are “neural circuits whose structure enables 

them to perform one particular kind of computation” (Chomsky 2002, pp. 84-86). Pinker 

and Jackendoff (2005, p. 207) also defend something like this, pointing to neuroimaging 

and brain damage studies suggesting that “partly distinct sets of brain areas subserve 

speech and non-speech sounds,” evidence that speech perception “dissociates in a 

number of ways from the perception of auditory events.” 

 

For this reason I have construed the issue of linguistic specialization along 

traditional lines. I turn next to the other aspect of the problem of defining a language 

module. 

 

7.2.2 The domain of language clarified 

 

In one sense defining the language domain ought to be a simple affair, for is it not just 

that domain which encompasses activities such as speaking and signing, and (on a broader 

plane) reading and writing? The straightforward answer to this is yes, but the complete 

picture is somewhat more complicated by the deep and really rather mysterious 

relationship between thought and language. It is clear that language expresses a speaker’s 
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thoughts, and that whatever many other purposes a language may serve it always comes 

down to the ability to convert sound (or some other signal) into meanings, and meanings 

into sound (Chomsky 1980b, p. 46; Sterelny 2006, p. 24; Jackendoff 2007, p. 2; 

Christiansen & Chater 2016, pp. 114-15). From this perspective it is natural to view 

language as serving some sort of coding function, and the language faculty as a cognitive 

system that enables translation between mentalese and strings of symbols (Pinker 1994, p. 

60). On such a view there would seem to be at least two (potentially overlapping but 

functionally distinct) interacting systems of interest: a thought or “central” system on the 

one hand, and a coding or translation system on the other.2 One system generates and 

processes thoughts, the other encodes and decodes them. The second system takes its 

input from the first during production tasks, while the first takes its input from the 

second during comprehension tasks. This is admittedly crude and schematic; there are 

also many who would question the aptness of a conduit metaphor for language (Evans & 

Levinson 2009, pp. 435-436; Smit 2014). Nonetheless I think the picture is reasonable. As 

Justin Leiber (2006, pp. 30-31) puts it, the “commonplace distinction that psychologists 

and linguists use [takes] speaking and hearing to be ‘encoding’ and ‘decoding’—i.e., 

converting thoughts, or mental items, into the physical speech stream, and converting the 

physical speech stream into thoughts, or mental items.” Certainly a more useful analogy 

in the present context would be hard to find, since disputants in the debate over linguistic 

modularity can be roughly grouped in accordance with how broadly they construe the 

language domain—as we shall see, there are those who would have it encompass (or even 

reduce to) thought, and those who would restrict it to the coding function alone. 

 

Chomsky’s (1965; 1975; 1979; 1980a; 1995; 2002; 2005; 2010; 2016) many 

iterations of the language module have one thing in common in their portrayal of a central 

system that encompasses the very mechanisms of thought (McGilvray 2014, p. 59; 

Collins 2004, p. 518). In a collaborative paper, Hauser, Chomsky and Fitch (2002) 

distinguished between the faculty of language in a narrow sense (FLN) from the faculty 

of language in a broad sense (FLB). FLN as a subset of the mechanisms underlying FLB 

is “the abstract linguistic computational system alone, independent of the other systems 

with which it interacts and interfaces” (Hauser et al. 2002, p. 1571). Their assumption is 

																																																								
2 Within the framework I have been pursuing here, these systems would be construed as two distinct (if 
possibly overlapping) C-networks. 
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that “a key component of FLN is a computational system (narrow syntax) that generates 

internal representations and maps them into the sensory-motor interface by the 

phonological system, and into the conceptual-intentional interface by the (formal) 

semantic system” (Hauser et al. 2002, p. 1571). Furthermore “a core property of FLN is 

recursion,” which yields discrete infinity and is suggested to be the only uniquely human 

and uniquely linguistic cognitive possession (Hauser et al. 2002, p. 1571). The property of 

discrete infinity allows the generation of a limitless array of hierarchically structured 

expressions from a finite base of elements—the same property which (it is alleged) 

generates the system of natural numbers (Chomsky 2005; 2010). The technical term for 

this operation is Merge, which in its simplest terms is just set formation (Berwick & 

Chomsky 2016, pp. 10, 98). Merge combines words (“Lexical Items”) and sets of words, 

taking their semantic information (“features”) to a semantic interface (SEM—the 

“conceptual-intentional system”) and their sound information to a phonetic interface 

(PHON—the “sensory- motor system”). Merge is therefore a system that generates 

sentences (“expressions”) in an inner symbolic code or language of thought (an “I-

language”) (Chomsky 2005, pp. 3, 4; 2010, pp. 55, 59). 

 

It is important to be clear about what conception of language lies behind this 

proposal. It is easy to be misled by talk of a phonetic interface, the mappings to that 

interface and indeed the whole sensory-motor apparatus, which along with the semantic 

system is supposed to be a system for linking sound and meaning. This tends to imply 

that the production of an acoustic signal for the purpose of externalization and 

communication is what language is for. But this is actually only “the traditional 

assumption” (Chomsky 2010, p. 54). The “primary relation” of interest is supposed to be 

that between the core faculty of language (FLN) and SEM, i.e. the “systems of thought” 

(Chomsky 2010, pp. 54-55). Expressions that satisfy the interface conditions of SEM 

yield a “language of thought,” and it is hypothesized that “the earliest stage of language,” 

which supposedly arose prior to externalization, was “just that: a language of thought, 

available for use internally” (Chomsky 2010, p. 55). This inner code was the unique 

possession of a privileged individual, Prometheus, whose language provided him with 

“capacities for complex thought, planning, interpretation, and so on....[which] would 

then be transmitted to offspring, coming to predominate” (Chomsky 2010, p. 59). It is 

easy to forget that because externalization and communication came later, the language of 
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Prometheus was not just a silent inner speech, as the residue of an internalized 

conventional public symbol system might be. Rather it is something like the reflexively 

complex but wordless stream of thought available to (presumably) any member of Homo 

sapiens not yet exposed to a public language.3 For language is “virtually synonomous with 

symbolic thought” (Chomsky 2010, p. 59, quoting Ian Tattersall), and “fundamentally a 

system of thought” (Berwick & Chomsky 2016, p. 102). Perhaps the clearest indication 

that for Chomsky language is the acme of central cognition are recent remarks suggesting 

that language functions as a means of integrating information from various proprietary 

domains: “…language is the lingua franca that binds together the different 

representations from geometric and nongeometric ‘modules,’ just as an ‘inner mental tool’ 

should. Being able to integrate a variety of perceptual cues and reason about 

them…would seem to have definite selective advantages” (Berwick & Chomsky, pp. 165-

166). This makes Prometheus’ language a “language of thought” in pretty much the 

classical sense (Fodor 1975). Thus when Chomsky implores us to consider how difficult it 

is not to talk to ourselves, both during sleep and our almost every waking hour (Berwick 

& Chomsky 2016, p. 64), to press the point that language is really an instrument of 

thought, it is important not to assume (no matter how reasonably) that he is extolling the 

virtues of a public language. The powerful scaffolding which a public language provides 

in the form of an echo for our ideas and ruminations—the chance to objectify and 

insinuate our thoughts into a manipulable format external to ourselves, surely what makes 

language able to serve as a “tool for thought” par excellence—cannot be denied, of 

course, and Chomsky certainly does not (e.g. Berwick & Chomsky, p. 102). But his 

primary aim here is not to make the case for externalization so much as to point up the 

intimate and virtually indissoluble relation between a Promethean private language and 

internal thought. For language here ultimately means something other than what most 

people, and I suspect what most language researchers, think about when they think about 

language (see below). Most researchers would understand the coding function to be a 

distinct system for the translation of thought into the sentences of a public language, even 

if this system can be decomposed into elements that are shared with other systems 

(including systems of thought). Now just what all this implies for an ELU we shall come 

to presently, but first let me contrast Chomsky’s view with Jerry Fodor’s, who seems to 

																																																								
3 By “wordless” I mean without the words of a public language. 
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have a more conventional—Chomsky would say “traditional”—understanding of what I 

have called the coding function. 

 

Fodor has consistently maintained that only peripheral input systems are likely to 

be modular. On this view modules are associated with specific channels of sensory 

transduction—there may be modules for vision, olfaction and hearing, but likely not for 

complex thought, memory and judgment. I have two points to make about this, the first 

somewhat ancillary to the second. In light of what I have discussed in previous chapters, 

this way of construing the difference between central and peripheral systems seems 

definitely mistaken. The material I presented in Chapters 2 through 5 demonstrates that 

elements of even our most evolutionarily ancient transduction systems participate in 

various cross-domain functional composites (C-networks), including those underlying 

central processes. Transduction dynamics, which are usually characterized by a certain 

degree of speed, autonomy or reflexivity, may even be activated in many cases by the 

same domain-general nodes (M-networks/modules) which yield central system 

dynamics. This might in fact explain the frequent penetrability of perception. Now as I 

have been at pains to show, there is a case to be made for the modularity of mind. But it 

fails to get a grip where Fodor would like. And besides, even if there were dedicated 

sensory-motor systems, it would still be unlikely that a sharp central/peripheral 

distinction at the modular level could be maintained. For Fodor the distinction is sharp, 

but this is because for him it holds by fiat: he has in effect simply stipulated that a module 

is a device for the processing of transduced information. The possibility that cognition 

might be underwritten by anatomically or functionally exiguous units throughout—the 

basic assumption in cognitive neuroscience, as we saw—is not actually excluded by 

Fodor: it is just that he has construed the term “module” to mean something quite 

specific, and that something does not extend to the autonomous columns that handle low-

level subfunctions right across the neocortex (Mountcastle 1978), long understood to be 

the seat of complex thought and executive function. But Fodor does not own the term, 

and the modular hypothesis—under that very name and always referring to the 

functionally specialized units of the mind/brain—goes back at least to the 1950s, 

appearing in works by Vernon Mountcastle (1957; 1978), David Marr (1976) and Noam 
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Chomsky (1980a) well before the appearance of Fodor’s (1983) monograph.4 As Collins 

(2004, p. 506) summarizes the Fodorian attitude to the central systems: “for Fodor, 

whether there are ‘central’ modules is at best moot; the thesis that it’s all modules he 

considers to be virtually a priori false.” 

 

The point about Fodorian modularity I want to impress, however, is not that I 

think it draws a distinction that is arbitrary so far as the modularity of mind is concerned 

(it may be aptly drawn at some other level of inquiry, e.g. an evolutionary one); it is that 

his understanding of modularity leads directly to a certain kind of language module, one 

very different from Chomsky’s (Collins 2004). Since modules for him are peripheral 

input devices, it follows that any language module must be peripheral, and thus not the 

sort of system which generates expressions in an inner symbolic code, as Chomsky’s does. 

Fodor’s language module is a “sentence encoding-decoding system”—a parser, with an 

encapsulated representation of grammar (Fodor et al. 1974, p. 370). Language is for him 

“a psychological mechanism that can be plausibly thought of as functioning to provide 

information about the distal environment in a format appropriate for central processing” 

(Fodor 1983, p. 44). On this account language is not a central process, not pure symbolic 

thought, as it is for Chomsky; rather it is a “psychological mechanism” that provides grist 

for the central system mill (i.e. for the inner “language of thought”). 

 

All this can make for confusion in debates about the modularity of language. It is 

not hard to see how interlocutors might talk past one another. Does a mechanism 

recruited exclusively for thought, or perhaps for thought and a more peripheral coding 

operation—but nowhere else across cognition—count as an ELU? Or must the 

mechanism be exclusive to the coding operation alone before it can be considered an 

ELU? It depends on whether you view systems of thought as forming part of the domain 

of language. Evidently some do and others do not. Take metarepresentation as a case in 

point, the capacity for nested thinking which allows us to embed thoughts within 

thoughts, in principle indefinitely, witnessed in a child’s being able to draw a picture of 

themselves drawing a picture (Suddendorf 2013; Zerilli 2014). If it could be shown that 

metarepresentation is an exclusive property of thought, or an exclusive property of 

																																																								
4 I do accept, of course, that Fodor performed a tremendous service in shaping the discussion of modularity 
in cognitive psychology. 
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thought and the coding function taken together, metarepresentation would count as an 

ELU on a Chomskian interpretation of language (defined in terms of thought). For 

someone with a more traditional understanding, by contrast, metarepresentation would 

not count as an ELU, for though it might appear in the coding function, it is exploited 

outside the language domain (defined in terms of processes that operate distinctly from 

thought), in this case within the systems of thought. 

 

Morten Christiansen and Nick Chater are two psycholinguists who appear to have 

the more traditional understanding of the language domain in mind. Among the various 

factors they cite to explain why natural languages appear to be so well suited to the 

human brain, and hence easy to learn and process, they include “constraints from 

thought” (Christiansen & Chater 2016, p. 51). This form of explanation makes most sense 

from the point of view that language and thought are not synonomous (otherwise the 

explanation would be uninformative). It is just as well, then, that Christiansen and Chater 

indeed do regard “constraints from thought” as “non-linguistic constraints” (2016, p. 50). 

While I shall adopt this more traditional construal of the language domain, in § 7.3 I 

survey evidence of the extensive reuse of language circuits across domains having nothing 

much to do with either language or thought. In other words the material I present below 

should be problematic for anyone defending the existence of an ELU, regardless of how 

eccentrically they wish to construe the language domain. 

 

7.2.3 Examples of elementary linguistic units 

 

Before leaving this section, I should provide some further guidance on the most likely 

candidates for the role of an ELU. Now that we have clarified both in what respects an 

ELU would be specialized and in what sense it could be linguistic, we can turn to some 

concrete proposals. 

 

 Much of the impetus for the claim that the mind/brain contains ELU’s came 

from early work in generative linguistics, which formalized a large stock of highly 

intricate and apparently system-specific rules for the derivation of grammatical strings 

(“surface structures”) from the more abstract “kernel” sentences (“deep structures”) 

underlying them (Chomsky 1956; 1957). These unspoken deep structures were 
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hypothesized to be “present to the mind” whenever a speaker produces the surface forms 

of her language (Chomsky 2006, p. 16). This inspired the belief that the mind/brain 

incorporates specialized systems which function more or less exclusively for the 

generation of surface structures. While the field of generative linguistics today would 

hardly be recognizable to an undergraduate familiar with work from (say) the mid-late 

1960s, the influence of that early work has not dissipated entirely, and it is, for all that 

times have changed, still plausible to suppose that at least some linguistic operations are 

domain-specific. Let me illustrate with a simple example drawn from the generative 

tradition. 

 

The assignment of phonetic interpretations to surface structures might hint at 

cognitive resources which, in virtue of how detailed and context-specific they seem, could 

reasonably be supposed to serve no other function. Assume that a speaker has 

encountered the following phonetic realizations: 

 

expedite à expeditious 
contrite à contrition 
ignite à ignition 

 

Assume further that the speaker has not yet encountered the word “righteous,” so has not 

yet been in a position to establish the derivation 

 

right à righteous 

 

The speaker on hearing “righteous” (properly so as “rahy-chuh-s”) for the first time 

knows that the underlying form cannot be the same as for expeditious, contrition, and so 

on (unless the case is just an exception), though had the speaker heard “rish-uh-s” they 

would not have hesitated in concluding that “rite” would be the underlying form 

(analogously to expedite/expeditious, etc.). The speaker understands that the underlying 

form of “righteous” must instead be “right” (or, more technically, a form containing “i” 

followed by the velar continuant “gh”), for only some such form could make sense of 

what was heard given the following rule (which the speaker must be taken to know): 

 

“t” followed by a high front vowel [“-eou,” “-iou,” “-ion,” “-ian,” etc.] is realized 
as “ch” [as in chew, choke, challenge, etc.] after a continuant [e.g. “–ahy,” as in 
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fight, bight, sight, etc.—as opposed to “i” as in fit, bit, sit, etc.], and as “sh” [as in 
shoe, show, sham, etc.] elsewhere. 

 

Detailed phonological rules of this kind—in fact much more intricate ones than this—

have frequently been thought to reflect principles not obviously assimilable to other 

cognitive domains, pertaining exclusively to the coding function. This accompanies the 

thought that such rules are so exotic as far as the agent’s overall envelope of capacities go 

that handling them must require a very special suite of neural and computational 

resources. 

 

 Pinker and Jackendoff (2005) suggest other rules. They observe that many 

grammatical principles have no real application outside language, principles such as linear 

word order (John loves Mary/Mary loves John), agreement (the boy runs vs the boy run), 

case (John saw him vs John saw he), tense, aspect, derivational morphology (run/runner) 

and inflectional morphology (the girls are/the girl is). Moreover, they contend that 

linguistic recursivity is not reducible to analogues in mathematics. They also nominate 

speech perception as possibly uniquely adapted for the perception of human speech 

sounds (and not other types of sounds). Brattico and Liikkanen (2009, p. 261), in passing, 

suggest that the lexicon, as “a list of feature bundles,” is domain-specific. Their argument 

is in fact that the only truly domain-specific aspects of language will turn out to be 

nongenerative—generative mechanisms (recursion/Merge) will be domain-general. 

 

 Actually the question of what it takes to be domain-specific, or “specialized for 

X,” can be a little more complicated. For instance, associative learning is the paradigm 

domain-general cognitive capacity. But a particular learned association, say between fire 

and warmth, could well be considered domain-specific. The specific associative 

mechanism linking fire and warmth may be discretely localized in the brain and active 

only in response to those specific stimuli. Similarly, we might have a general capacity to 

run recursive algorithms, but a particular implementation of that procedure, say a 

numerical one, may be domain-specific. It might be that we use the same token procedure 

to recognize faces and words. But it is perhaps more likely that there are different 

instantiations of a more general capacity to process and recognize special types of 

patterns. It is therefore important to distinguish between a general capacity, and a 
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specific, repeated and (potentially) parallel use of that capacity. I will return to this 

important distinction in § 7.5 when I discuss neural redundancy. 

 

7.3 IS THERE A LANGUAGE MODULE? 

 

As we saw in Chapter 4, certain areas of the brain have long been regarded as 

quintessentially language areas. For many researchers this assumption and the conviction 

that there is far more nature than nurture involved in language acquisition have sat cheek 

by jowl. In the last two decades, however, the standard view of how language is organized 

and processed in the brain, as well as how it is acquired, has changed dramatically. This is 

so for at least two reasons (Kuhl & Damasio 2013). First, neuroimaging evidence in the 

form of electroencephalography, magnetoencephalography, positron emission 

tomography and (increasingly) functional magnetic resonance imaging has furnished a 

wealth of information about how and where language is processed in real time in the 

brains of patients carrying out linguistic tasks. The picture which emerges here is very 

unlike the one bequeathed by Paul Broca and Carl Wernicke. Second, psycholinguistic 

evidence is much richer and more subtle than what was available in previous decades. It 

reveals that infants begin learning language from the moment they come into contact with 

the sound inventories of their native tongue, indeed, even in utero. It appears that the 

early sensitivity of a fetus to features of intonation may later help the infant learn its 

mother tongue (Mampe et al. 2009). For instance, the French “papa” has a delayed stress, 

and a rising intonation, while the German has an early stress, and a falling intonation. 

When an infant begins to form its first sounds, it can build on melodic patterns that are 

thus already familiar, and so does not have to start from scratch when learning 

phonological and morphological regularities (the investigators suspect the evolutionary 

roots of this behaviour to be older than the emergence of spoken language). I shall say a 

little more on the acquisition issue in my next section. Here I shall focus on organization, 

and review evidence of the extensive reuse of what were traditionally regarded typical 

language circuits. 

 

 Plausibly, the more distributed a system is in the brain, the more likely it will not 

be a specialized system (Anderson 2010; see Chapter 3). It is now known that language is 

one of the most distributed systems in the brain, and that “the operation of language to its 
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full extent requires a much more extended network than what [classical models have] 

assumed” (Hagoort & Indefrey 2014, p. 359; Anderson 2010, p. 247). As Hagoort and 

Indefrey summarize the emerging consensus: 

 

The basic principle of brain organization for higher cognitive functions proposes 
that these functions are based on the interaction between numerous neuronal 
circuits and brain regions that support various contributing functional 
components. These circuits are not necessarily specialized for language but 
nevertheless need to be recruited for the sake of successful language processing. 
(2014, p. 359) 

 

The evidence motivating this principle in turn corroborates the prediction that more 

recently evolved functions should be more distributed than older ones, since it should 

overall prove easier to exploit existing circuits than to have to evolve custom-made ones, 

with there being “little reason to suppose that the useful elements will happen to reside in 

neighboring brain regions….[A] more localist account of the evolution of the brain 

would…expect the continual development of new, largely dedicated neural circuits” for 

new functions (Anderson 2010, p. 246). Anderson’s review of some 1500 subtraction-

based fMRI experiments suggests that language could well be the paradigm of distributed 

processing, supported by more distributed activations than visual perception and 

attention (Anderson 2007a) and indeed any other domain that was tested, including 

reasoning, memory, emotion, mental imagery and action (Anderson 2008). 

 

Broca’s area holds a special place in the tradition of modular theorizing about 

language. While it cannot be doubted that the area plays a crucial role in language 

processing, as it happens it is also implicated in various action- and imagery-related tasks 

such as those involving the preparation of movement (Thoenissen et al. 2002), the 

sequencing of actions (Nishitani et al. 2005), the recognition of actions (Decety et al. 

1997; Nishitani et al. 2005), imagery of motion (Binkofski et al. 2000), and the imitation 

of actions (Nishitani et al. 2005). It is also known to be involved in certain memory tasks 

(Kaan & Stowe 2002) as well as in music perception (Maess et al. 2001). Kaan and Swaab 

(2002) set out to identify whether syntactic processing is localized in the brain, and found 

that while Broca’s area is recruited during syntactic processing tasks, it joins a larger brain 

network that includes the anterior, middle and superior areas of the temporal lobes, none 

of which in turn appear to be syntax-specific. 
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In the auditory domain, phoneme discrimination has long impressed perceptual 

psychologists. It involves “categorical perception,” i.e. “the segmenting of a signal that 

varies continuously along a number of physical dimensions…into discrete categories, so 

that signals within the category are counted as the same, even though acoustically, they 

may differ from one another more than do two signals in different categories” (Cowie 

2008). Fiona Cowie, no fan of linguistic nativism, accepts that there is a “quite 

substantial…inborn contribution to phonological learning.” But, as she goes on to 

discuss: 

 

…is this inborn contribution to phonological learning language specific[?]….[T]o 
this question, the answer appears to be “No.” First, the “chunking” of 
continuously varying stimuli into discrete categories is a feature not just of speech 
perception, but of human perception generally. For instance, it has been 
demonstrated in the perception of non-linguistic sounds, like musical pitch, key 
and melody, and meaningless chirps and bleats…It has also been demonstrated in 
the processing of visual stimuli like faces....Secondly, it is known that other 
animals too perceive categorically. For instance, crickets segment conspecific 
songs in terms of frequency…swamp sparrows “chunk” notes of differing 
durations….[O]ther species respond categorically to human speech! 
Chinchillas…and cotton-top tamarins…make similar phonological distinctions to 
those made by human infants. (Cowie 2008, § 3.3.4) 

 

A very recent experiment found that early exposure to multiple languages heightens 

acoustic sensitivity generally (Liu & Kager 2016). In particular, bilingual children appear 

more sensitive to subtle variations in musical pitch than their monolingual counterparts. 

 

There is something especially piquant in discovering that classic sensory and 

motor areas play a key role in higher thought. In Chapter 2 I reviewed evidence of the 

role of vision in semantics. Damasio and Martin demonstrated over two decades ago that 

visual areas are active during noun processing tasks (e.g. naming colours, animals, etc.) 

(Damasio & Tranel 1993; Damasio et al. 1996; Martin et al. 1995; 1996; 2000). We saw 

that word generation in sighted subjects depends at least in part on the bilateral occipital 

cortices, regions that have always been thought to be the most specialized in the brain 

(Pascual-Leone et al. 2005, p. 394). Beyond the association with phylogenetically older 

sensory and perceptual functions, language also seems to have been originally bound up 

with the motor system, for motor circuits still appear to be crucial to language perception 

and comprehension on many levels of processing (as indeed the functional profile of 
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Broca’s area would tend to suggest). Pulvermüller and Fadiga (2010) report that at the 

level of speech perception and processing, changes in the motor and premotor cortex lead 

to deficits in phoneme discrimination (2010, pp. 353-355). There is also evidence that the 

acoustic properties of phonemes have been shaped to some extent by postural aspects of 

the motor system (Graziano et al. 2002; MacNeilage 1998). At the level of semantic 

comprehension, magnetic stimulation of the motor system influences the recognition of 

semantic word categories (Pulvermüller & Fadiga 2010, pp. 355-357). Pulvermüller 

(2005) earlier reported evidence that hearing the words “lick,” “pick” and “kick,” in that 

order, activates successively more of the primary motor cortex, suggesting both that the 

motor regions involved are inherent to the comprehension task and that comprehension 

may involve some kind of simulation. Glenberg et al. (2008) report similar findings, in 

particular how the use-driven plasticity of motor circuits affects abstract and concrete 

language processing. A particularly intriguing experiment by Glenberg and Kaschak 

(2002) showed that response times in sentence comprehension tasks are longer when the 

subject is required to perform actions that oppose the direction of motion implied in the 

sentences being heard. On its own this is compatible with motor circuits being recruited 

via simulation, but actually the result held up even when the sentences related abstract 

actions, such as “he sold his house to you,” rather than simply when they involved 

obviously evocative sentences such as “put a grape in your mouth” or “you gave the paper 

to him.” This argues for more than just simulation, and indicates either a metaphorical 

mapping between domains or perhaps some other noncontingent contribution of the 

motor cortex in semantic comprehension. Incidentally, it has been demonstrated that 

reading comprehension improves when children are allowed to manipulate physical 

objects (Glenberg et al. 2007). Finally, syntactic processing seems to depend in important 

ways upon the perisylvian cortex, which is involved in the processing of hierarchically 

structured action sequences (e.g. lifting a cup, turning it this way, etc., as guided by the 

overall aim of quenching thirst) (Pulvermüller & Fadiga 2010, pp. 357-358). And it is 

known that both word- and object-combining have overlapping neural implementations 

(Greenfield 1991). (I review more evidence of the motor-syntax connection in my 

discussion of sequence learning, below.) Taken together, these results strongly suggest 

that the motor system enters crucially into the perception and comprehension of language 

at various levels of processing, including phonological, semantic and syntactic levels. 
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This brings us back to Broca’s area. I have already reviewed evidence attesting to 

its functional complexity and its importance in action sequencing. A natural response of 

those committed to the specificity of language circuits would be to concede all of this 

reuse, and say simply that what we are witnessing is the reuse of linguistic circuits for 

other, nonlinguistic functions. Given that the motor system is very much older than the 

language faculty, the proposal need not be seriously entertained. However, a more subtle 

variant of the idea lies behind the contention that Merge may be the source of 

productivity and generativity in nonlinguistic domains. As Brattico and Liikkanen pose 

the issue:  

 

To how many cognitive domains can this combinatorial operation be applied? In 
principle, there seems to be no limit, provided that the appropriate interface 
mechanisms are in place. This architecture of language makes it easy to imagine a 
recursive symbol processor which can create productive behavior in several 
cognitive domains depending on which type of symbols it applies to and which 
type of interfaces it is required to handle. (2009, p. 262) 

 

Following Chomsky, they opine that it might have been the application of Merge to 

concepts which yielded the “explosive growth of the capacities of thought…leading to the 

liberty of the imagination to transpose and change its ideas,” which, as suggested by 

Hume, could generate such imaginary objects as “winged horses, fiery dragons, and 

monstrous giants.” When Merge is emptied of all content, the result is the system of 

natural numbers. 5  And so on. The research above, highlighting the indispensable 

contribution of primitive sensory-motor areas for syntactic and semantic processing, 

suggests that the argument is skewed, for it tends to imply that Merge, recursion, 

metarepresentation or whatever generative engine happens to be invoked to account for 

linguistic productivity—with Broca’s area providing its most likely neurological basis (see 

e.g. Brattico & Liikkanen 2009, p. 273)—is some sort of ELU, i.e. an integrated, 

dedicated, self-contained computational mechanism, perhaps dissociable from core motor 

operations (see e.g. Berwick & Chomsky 2016, pp. 75-77). If far more evolutionarily 

primitive mechanisms are behind crucial aspects of linguistic processing at the highest 

levels, this seems very suppositious. It is more plausible (i.e. parsimonious) to assume that 

linguistic productivity was assembled from prior sensory-motor materials, with Broca’s 

																																																								
5 “It is not hard to show that, if the lexicon is reduced to a single element, then Merge will yield a form of 
arithmetic” (Chomsky 2010, p. 53). 
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area providing a rich source of sequence-processing power (see below). That is to say, the 

role of Broca’s area in language is evidence that it already performed just the kind of 

sensory-motor functions that made it ideal for integration within a larger language 

network (Müller & Basho 2004). 

 

This conjecture is rendered more plausible when one reflects further on the deep 

connections between syntactic structure and motor sequences. Even in lower organisms, 

motion is never haphazard and shambolic; it is always coordinated, structured and 

systematic relative to the organism’s aims and the needs of survival. Coordination is 

intrinsic to motor function, a basic prerequisite of meaningful action. Basic body acts 

form “action chains” of “meaningful goal-directed action sequence[s],” as exemplified in 

the drinking-from-a-cup action sequence mentioned earlier (Pulvermüller and Fadiga 

2010, p. 357). A centre-embedded sentence (The man {whom the dog chased away} ran 

away) parallels the nested structure of a typical jazz piece (theme {solo} modified theme) 

and the action chain formed when entering a dark room at night (open the door {switch 

on the light} close the door); in each of these cases, “a superordinate sequence surrounds 

a nested action or sequence” (Pulvermüller and Fadiga 2010, p. 357). Indeed the patterns 

of coordination and subordination within many complex/cumulative sentences are often 

deliberately designed to evoke the actions they describe, a device familiar to writers and 

on display in the best literature (Landon 2013). It should not come as a surprise, then, 

that syntax recruits the same areas of the brain that are essential for the planning and 

coordination of movement. Christiansen and Chater (2016) go a little further, placing 

sequence learning at centre-stage of their account of linguistic productivity. They think 

complex sequence learning amply explains our ability to process recursive structures, and 

(consistent with my theme) that recursivity “relies on evolutionarily older abilities for 

dealing with temporally presented sequences of input” (2016, p. 204). There is a wealth 

of comparative and genetic evidence—quite apart from the neural evidence I have dwelt 

on up to this point—that can also be marshalled in support of the idea that language 

makes heavy demands on our complex sequence learning abilities. What is currently 

known of the FOXP2 gene is consistent with a human adaptation for sequential 

processing (Fisher & Scharff 2009). It is well known that mutations of the gene produce 

severe speech and orofacial impairments (Lai et al. 2001; MacDermot et al. 2005). 

Moreover when the homologous gene was inserted into mice, the mice displayed superior 
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learning abilities for action sequences (Schreiweis et al. 2014). Specific language 

impairment (SLI), for its part, seems to be the result of a clear sequence processing deficit 

(Hsu et al. 2014). Further neural evidence of a shared basis for language and general 

sequence learning is also available (see the review in Christiansen & Chater 2016, pp. 206-

207). For example, syntactic and sequencing abilities do not appear to dissociate: when 

one gets knocked out, chances are the other does too. 

 

Notice by the way that (without prejudging the issue) this account is perfectly 

compatible with the idea that aspects of arithmetic, conceptual thought, musical syntax, 

and so on, could be exaptations of prior sequence learning capabilities, whether via 

language or some other (perhaps more direct) phylogenetic route. Certainly recursive and 

metarepresentational capacities seem to crop up elsewhere in cognition, well outside the 

domains of language and thought, for example mental time travel, theory of 

mind/sociality, culture and morality (Suddendorf 2013). 

 

Thus far I have been largely concerned with the neuroimaging and biobehavioural 

evidence against linguistic modularity. For the remainder of this section I shall very 

briefly mention a few arguments founded on other considerations, namely, those arising 

from evolutionary theory, computational modeling and work on Universal Grammar. In 

the upcoming section I shall address the matter of innateness. The final section 

introduces my Redundancy Model to account for the rare but still important evidence of 

cognitive dissociations, as well as other phenomena not easily explicable without some 

such account. 

 

It is widely accepted that of all human phenotypes language is one of relatively 

recent origin, certainly far more recently evolved than basic sensory-motor, memory and 

conceptual systems. Even if one adopts the view that language and the physiological 

mechanisms required to support complex vocalizations evolved together (i.e. that 

language and speech co-evolved), by any account language is a phylogenetically recent 

phenomenon—de Boer (2016) thinks it is as old as the adaptations for complex 

vocalizations and places its emergence at around 400,000 years ago. This fact at once 

suggests that specific cognitive adaptations for language are unlikely, essentially for the 

reasons already given: it is generally easier for evolution to reuse and exapt existing 
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resources than to have to evolve them anew from scratch (Anderson 2010). But other 

reasons support this conclusion as well. For adaptations to arise, evolution requires a 

stable environment (Sterelny 2006; Christiansen & Chater 2016). An adaptation for 

language would require a linguistically stable environment, but language and cultural 

environments generally are anything but stable, with both words and structural features 

of languages subject to swift changes, and cultures subject to significant shifts of 

convention, often even intragenerationally (Dunn et al. 2011; Greenhill et al. 2010; 

Sterelny 2012). In fact when it comes to cultural environments, plasticity is typically 

favoured over robustness—changes that allow the organism to cope with unpredictable 

variations in the local environment are favoured over specific adaptations narrowly 

tailored to that environment, unless of course the culture does provide a stable target over 

which selection can operate (see § 7.4, below). 

 

Changing tack somewhat, advances in computational neuroscience have 

uncovered a core set of standard, “canonical” neural computations. These computations 

are “combined and repeated across brain regions and modalities to apply similar 

operations to different problems” (Carandini 2015, p. 179). One example of a canonical 

computation, particularly in sensory systems, is “filtering.” This is a basic connectionist 

operation in which neurons perform a weighted sum on sensory inputs. The weights are 

called “receptive fields,” and the process is performed across the visual, auditory, 

somatosensory and possibly motor systems—systems most of which we have seen are 

important and even crucial to language processing. Another canonical computation is 

“divisive normalization.” This involves dividing neuronal responses by a common factor, 

namely the summed activity of a specific collection of neurons. The process is considered 

important to operations as varied as “the representation of odours, the deployment of 

visual attention, the encoding of value, and the integration of multisensory information” 

(Carandini 2015, p. 180). Other examples would include predictive coding, which has 

certainly received its fair share of attention in recent years (Clark 2013), as well as 

“exponentiation, recurrent amplification, associative learning rules, cognitive maps, 

coincidence detection, top-down gain changes, population vectors, and constrained 

trajectories in dynamical systems” (Carandini 2015, p. 180). What all this shows is that, at 

levels of explanation not too far down—we are still at the “algorithmic” level here, not 

quite yet at the circuit or cell level—there are fundamental computations intrinsic to the 
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functioning of the brain which cut across various modalities, very likely including 

language. Cognitive operations thus look set to share many of their underlying 

computations with other domains, even with domains whose physical resources they do 

not actually share. 

 

While we are on the topic, it might be just as well to mention Spaun again (the 

brain simulation we met in Chapter 3). Spaun makes a different point, one which I have 

been at pains to make in this section, this Chapter, and indeed throughout the whole 

thesis. Spaun has been successful in showing that a computer can employ fully domain-

general learning principles, for Spaun reuses the same circuits to accomplish very 

different functions (cf. Pinker 1994). As I explained in Chapter 3, most machines are 

good at doing just one thing (playing chess, solving equations, etc.). Spaun is unique both 

as to the variety of the tasks it can perform and in its ability to learn new tasks using the 

same set of circuits. It is the first major step in answering an important challenge leveled 

by evolutionary psychologists and other proponents of traditional forms of modularity 

who for many years said that such a machine could not be designed (virtually on a priori 

grounds!). Well, Spaun is a machine that functions entirely by domain-general principles. 

(QED.) 

 

Finally, a word on Universal Grammar. One of the enduring ideas that has fallen 

out of the generative tradition, and to which a majority of both adherents and detractors 

alike have probably subscribed at one time or another, is the idea that all human 

languages share the same underlying grammatical base despite surface differences. In 

recent years, however, Universal Grammar has been discomfited by evidence of the 

bewildering variety of languages divergent in so many points of typology, structural and 

otherwise, as to render the theory of a universal syntax highly dubious. A point Evans and 

Levinson made early on in their 2009 review of the subject bears repeating here, for it is 

perhaps the single most stunning fact about the whole affair (the very idea, the project, 

the prospects, etc.): 

 

Somewhere between 5,000 and 8,000 distinct languages are spoken today….Less 
than 10% of these languages have decent descriptions….If we project back 
through time, there have probably been at least half a million human 
languages…so what we now have is a non-random sample of less than 2% of the 
full range of human linguistic diversity. It would be nice to at least be in the 
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position to exploit that sample, but in fact, as mentioned, we have good 
information for only 10% of that. (Evans & Levinson 2009, p. 432) 

 

Thus “nearly all generalizations about what is possible in human languages” are based on 

a pitiful 10% of less than 2% of all the languages that have ever existed on Earth! This is 

somewhere between sobering and depressing, especially given that “language death 

continues apace.” Universal Grammar does not support the case for an ELU. 

 

7.4 IS LANGUAGE INNATE? 

 

Let me begin with a couple of straightforward observations. Infants begin their lives with 

a remarkable ability to detect and respond to subtle acoustic distinctions that vary 

considerably across the world’s languages. Within a short time—indeed before 10 months 

of age (Kuhl & Damasio 2013)—and pursuant to a powerful and in some respects still 

mysterious learning process, they come to recognize statistical properties in the acoustic 

stream, form phonetic categories, distil words and possibly inflectional items, and 

assimilate the basic phrase structure of their mother tongue. By one year of age they 

appear able to comprehend simple imperatives like “Show me your nose” (Glickstein 

2014). And even though the linguistic environment is not as impoverished as was once 

believed (Clark 2009, p. 368; Pullum & Scholz 2002; Scholz & Pullum 2002), it is still 

striking that most if not all of this gets underway without explicit instruction or drilling. 

Overall, adopting the terminology and concepts introduced in Chapter 6, let us admit that 

language acquisition involves a certain degree of developmental robustness—not quite 

like that of the visual system or the growth of wings on birds (or the growth of limbs, or 

the onset of puberty, or any of the other rhetorical claims made in the past), but 

something to reckon with nonetheless. The beauty of developmental robustness is that it 

admits of degrees, so that to confess that a system is characterized by robustness does not 

commit one to implausible claims. Actually developmental robustness is somewhat 

reminiscent of the notion of being acquired under a “poverty of stimulus,” because to be 

so acquired just is to develop independently of the presence of some specific 

environmental stimulus or stimuli, and hence denotes a sort of invariance with respect to 

experience (Griffiths & Machery 2008, pp. 406-407). Drawing this link is acceptable so 

long as the locution is employed with care, and in the understanding that acquisition 

under poverty of stimulus is a relative phenomenon, not an absolute one (see Chapter 6). 



 133 

 The question now is whether this developmental profile reopens the debate over 

the existence of an ELU. Does the fact that language seems to be acquired so early in life, 

with fair uniformity over substantial variations of intelligence and experience, without 

specific training, and so on, call for the postulation of a domain-specific language module? 

I think this is a reasonable move, but an unnecessary one nonetheless. It is worth 

remembering that however robust language acquisition might be, even in the most ideal 

conditions it can take a long time to complete (up to ten years or more). There is anyway a 

more natural and parsimonious explanation for why language acquisition proceeds at the 

ontogenetic pace it does, and why it often seems that children attain mastery of their 

native language almost effortlessly. The explanation lies in the mutual accommodation (or 

fit) between the processing dispositions of the brain regions used in language and 

language itself. There is evidence both that language was culturally shaped (as a “cultural 

tool”) to be learnable and easy to process through cultural evolution (Everett 2012; 

Christiansen & Chater 2016; Laland 2016) and that selective pressures in the course of 

biological evolution may have equipped the brain with the sorts of processing dispositions 

and biases that made language easier to learn and process (Dor & Jablonka 2010; Sterelny 

2006; Christiansen & Chater 2016; see also Laland et al. 2015). Since cultural evolution is 

much the most important side of this story, I shall have a little more to say about that 

than about biological evolution. But before I go any further, let me frame the main point 

of this section in terms of Stanislas Dehaene’s (2005) “neuronal recycling” hypothesis, 

which we met briefly in Chapter 3. 

 

 Recall that towards the end of Chapter 6 I observed that while there is a relative 

sense in which modules and other functionally significant brain regions can be considered 

innate, the same cannot be said for the high-level cognitive functions composed of them. 

Cast in terms of reuse, low-level cognitive workings may be innate, but it does not follow 

from this that high-level cognitive uses are innate. Most complex cognitive functions are 

learned throughout the course of a person’s life—whether it be riding a bicycle, tying 

one’s shoes, or reading, these skills do not spontaneously unfurl as a result of intrinsically 

determined developmental processes, so it makes sense to withhold the designation 

“innate” or “robust” from the C-networks which implement them. Why then is language 

acquisition different from reading, performing long division, or learning physics? What is 

it about conversation that entitles us to regard it (and its C-network) as in some sense 
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sharing in or inheriting the robustness of its components (workings/M-networks)? This 

is where Dehaene’s notion of a “neuronal niche” is useful. Cultural acquisitions must 

make their home among a particular ensemble of cortical regions (a C-network) and this 

process is akin to the process of organisms creating their own ecological niches among the 

habitats in which they find themselves. Just as organisms must make the best use of the 

resources at their disposal, so cognitive organisms (i.e. cultural acquisitions) are 

constrained by the processing dispositions of the brain regions required for the tasks at 

hand. We have already seen that brain regions do have robust processing capabilities and 

clear input preferences. Dehaene’s idea is that the more the acquired practice matches the 

processing dispositions of the brain regions recruited for the task, the easier and less 

disruptive the learning process because the neural composite does not require a radical 

departure from existing cortical biases. On the other hand, the greater the distance 

between the acquired practice and the processing dispositions of the brain regions it will 

draw upon, the more difficult and protracted the learning process will be, potentially 

disrupting the regions’ established operations and whatever functional composites they 

already subserve. 

 

 It is not hard to see how this account would dovetail nicely with a cultural 

evolutionary account revealing the ways in which language has been shaped over many 

hundreds of generations to be learnable and easy to process. If human languages have in 

fact been so worked upon as to make them easy to learn and use, the neuronal niche 

which languages must nuzzle into already ideally conforms to the sorts of processing 

demands that languages impose on language users. It is just as well, then, that there is just 

such a cultural story to tell! Brighton et al. (2005) call it “cultural selection for 

learnability.” If the rudiments of syntax, phonology, morphology and so on are to survive 

from one generation to the next, they must earn their keep. If they are too cumbersome or 

exotic to be readily learned, taken up and transmitted to the next generation, they will be 

discarded for simpler and more streamlined or efficient devices. There is mathematical 

modeling to suggest that compositionality could have evolved in this fashion, for instance 

(Smith & Kirby 2008; Kirby et al. 2007). 

 

 It is hard to deny that human languages are cultural products (Everett 2012). And 

if so, it makes perfect sense that they will reflect the cognitive and neural dispositions of 
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the agents which created them in their own image. As Christiansen & Chater (2016, pp. 

43-44) explain: 

 

In other cultural domains, this is a familiar observation. Musical patterns appear 
to be rooted, in part at least, in the machinery of the human auditory and motor 
systems…art is partially shaped by the properties of human visual 
perception…tools, such as scissors or spades, are built around the constraints of 
the human body; aspects of religious beliefs may connect, among other things, 
with the human propensity for folk-psychological explanation. 

 

They identify and elaborate upon four groups of nonlinguistic constraints that they 

conjecture would have guided the cultural evolution of language. (Much of this can be 

read as a natural extension of the ideas in § 7.3 concerning the reuse of language circuits.) 

They divide the constraints here between those arising from thought, perceptuo-motor 

factors, memory and pragmatics. For example, on the assumption that thought is “prior 

to, and independent of, linguistic communication,” key properties of language such as 

compositionality, predicate-argument structure, quantification, aspect and modality can 

be “proposed to arise from the structure of the thoughts language is required to express” 

(2016, p. 51). Cognitive linguists have made the dependence of language on thought a 

critical feature of their perspective, arguing that our basic conceptual repertoire, 

including space and time, can be seen to have left their mark on the structure and 

categories of the world’s languages (Croft & Cruise 2004; Evans & Green 2006). 

Perceptuo-motor constraints have also left their mark, most obviously in “the seriality of 

vocal output” which “forces a sequential construction of messages” (2016, p. 52). 

Christiansen and Chater speculate that 

 

The noisiness and variability…of vocal…signals may, moreover, force a “digital” 
communication system with a small number of basic messages: e.g., one that uses 
discrete units (phonetic features, phonemes, or syllables). The basic phonetic 
inventory is transparently related to deployment of the vocal apparatus, and it is 
also possible that it is tuned, to some degree, to respect “natural” perceptual 
boundaries. (2016, p. 52) 

 

The extent of the connections here can be taken quite far. MacNeilage (1998), for 

example, has offered the intriguing hypothesis that syllabic structure might have been 

partly determined by the jaw movements involved in mastication! While not immediately 

obvious, on reflection it seems likely that many complex aspects of phonology and 
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morphology will be traced to similarly prosaic origins. Memory constraints are hardly less 

significant, seen, for instance, in the tendency to resolve linguistic dependencies (e.g. 

between arguments and their verbs) as early as possible, “a tendency that might not be 

syntax-specific, but instead an instance of a general cognitive tendency to attempt to 

resolve ambiguities rapidly whether for linguistic…or perceptual input (Christiansen & 

Chater 2016, p. 53). Finally, pragmatic constraints must have wielded a hefty influence 

on many aspects of language design—Levinson (2000) showed that discourse and 

anaphora appear to be related, so it is plausible that aspects of binding theory could be 

accounted for in terms of pragmatics. In all these ways and without doubt very many 

more (including ways yet to be explored—a monumental undertaking really) language has 

been “shaped by the brain,” naturally and parsimoniously explaining the child’s relative 

ease of acquisition and the intimate relationship between the child’s innate endowment 

and the structure of language. 

 

 Before concluding this section, I should indicate something of the process of 

mutual fit and accommodation as it occurs in the other direction. While language has 

been predominantly shaped by the brain, to be sure, in certain limited respects it is at 

least likely that the brain has been shaped through selection pressures for language. In the 

previous section I mentioned that in order for adaptations to arise, evolution requires a 

stable environment, and that adaptations for language specifically would require a 

linguistically stable environment. I also said that linguistic and other cultural 

environments are in the nature of things quite unstable, and that given these 

contingencies, when it comes to cultural environments, plasticity is typically favoured 

over robustness. This is just to say that unstable environments are conducive to the sorts 

of nervous systems which exploit the same resources for alternative ends, so that the 

cognitive mechanisms which are selected for in such circumstances will typically be 

flexible enough to be put to alternative uses (Avital & Jablonka 2000; Dor & Jablonka 

2010). Now is as good a time as any to reference the well-known phenomenon of “niche 

construction,” part of the “Extended Synthesis” in evolutionary biology (see Laland et al. 

2015 and Laland et al. 2011 for reviews). Niche construction is a specific instance of the 

broader process of gene-culture coevolution (Boyd et al. 2011; Richerson & Boyd 2005). 

The essential difference is that the process is cumulative. Organisms are always altering 

their environments to better suit their needs, whether by creating nests, burrows, dams 
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and so on. In the case of humans, these environmental modifications extend to the social 

and cultural worlds that encompass language. The changes wrought in these ways 

inevitably modify the selection pressures acting on organisms and so facilitate adaptation 

to the new environments they have created, which organisms will inevitably alter further 

still, which leads to new selection pressures, and so on and on in a virtuous cycle of 

organism-directed environmental and cultural modification and adaption that results in 

organisms being increasingly better adapted to the material, social and cultural worlds of 

their own making. It is highly likely that cognitive mechanisms evolved for language in 

this manner (not ELU’s, however: see following), particularly to the extent that we can 

identify universal, stable features across linguistic environments (such as a constrained 

range of phonemic units arranged combinatorially and with duality of patterning). Laland 

(2016, p. 5) conjectures that “[i]mportant elements of infant-directed speech, such as 

infants’ sensitivity to its linguistic features, or adults’ tendency to engage in behaviour 

that elicits rewarding responses from infants (e.g. smiles), have been favoured through a 

biological evolutionary process.” Adding to the list of adaptations which would have been 

crucial in the evolution of a language faculty we could cite the ability to represent 

symbolically (Deacon 1997), the ability to reason about other minds (Malle 2002), the 

ability to engage in pragmatics (Levinson 2000), increased working memory (Gruber 

2002), an increased domain-general capacity for learning words (Bloom 2000) and 

modifications to the human vocal tract (descended larynx, etc.) (de Boer 2016). It is vital 

to stress that in respect of none of these adaptations can we say that we are we dealing 

with an ELU—language may have provided the occasion for selection, but there is no 

evidence that these mechanisms are used exclusively for language, and indeed 

overwhelming evidence that the brain simply “doesn’t work that way”: virtually no 

cortical structure, not even the visual cortex(!), is so insensitive to experience that it 

resists all cooption during development. Rather, the evidence points to a brain that 

integrates all sorts of brain regions within the neural ecology for the management of 

organism-environment interactions, even where these regions might by nature be 

disposed to processing particular sorts of inputs over others. This makes good 

evolutionary sense, being overall “a more efficient use of metabolically expensive brain 

matter” (Anderson 2014, p. 46). Even the structure of the vocal apparatus has uses 

outside the language faculty (in music and meditation for example). 
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One last thing: cognitive adaptations of relevance to a specific domain like 

language may require no more than a simple change to synaptic connection patterns, for 

instance a genetic event that entrenches a pattern of connections between a set of 

preexisting domain-general modules (Ramus & Fisher 2009, p. 865). This is in fact just 

what the theory of reuse entails, at least for many cases involving the emergence of novel 

traits—to the extent that the theory holds that it will often be easier to mix and match 

existing elements than to have to evolve them afresh each time a new evolutionary 

challenge arises, the theory implies that specific combinations of neural elements (which 

have perhaps proved their value developmentally) will be selected for. How else can a 

specific arrangement of preexisting domain-general modules be entrenched other than 

through a robust synaptogenetic process of some description or another (see § 7.5, below, 

on “search”)? Thus it could be that some parts of the language C-network, perhaps even 

large parts, are already wired up and ready to go, even though the modules within the 

network are entirely domain-general. Preformed connections would surely result in a 

smooth period of language learning, even given “relatively slight exposure and without 

specific training” (Chomsky 1975, p. 4). 

 

7.5 ACCOUNTING FOR LINGUISTIC MODULARIZATION 

 

Throughout this chapter I have been investigating a very particular question, and an 

important one: does language rely on specialized cognitive and neural machinery, or does 

it rely on the same machinery that allows us to get by in other domains of human 

endeavour? The question is bound up with many other questions of no less importance, 

questions concerning the uniqueness of the human mind, the course of biological 

evolution and the power of human culture. What is perhaps a little unusual about this 

question, however—unusual for a question whose answer concerns both those working in 

the sciences and the humanities—is that it can be phrased as a polar interrogative, i.e. as a 

question which admits of a yes or no response. And indeed the question has divided 

psychologists, linguists and the cognitive science community generally for many decades 

now, more or less into two camps. In this concluding section I would like to sketch the 

beginnings of an answer to this question in a way that does not pretend it can receive a 

simple yes or no. Let me stress again that neural reuse is undeniable, that the evidence for 

it is simply overwhelming, and that it has left no domain of psychology untouched. There 
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seems to be nothing so specialized in the cortex that it cannot be repurposed to meet new 

challenges. In that regard, to be sure, what I am proposing in this section is 

unapologetically on the side of those who maintain that language is not special—that 

there is no specialized “language organ” or ELU. And yet I would like to carefully 

distinguish this claim from the claim that there are no areas of the brain that subserve 

exclusively linguistic functions. The neuropsychological literature offers striking 

examples of what appear to be fairly clean dissociations between linguistic and 

nonlinguistic capacities, i.e. cases in which language processing capacities appear to be 

disrupted without impeding other cognitive abilities, and cases in which the reverse 

situation holds (Fedorenko et al. 2011; Hickok & Poeppel 2000; Poeppel 2001; Varley et 

al. 2005; Luria et al. 1965; Peretz & Coltheart 2003; Apperly et al. 2006). An example 

would be where the ability to hear words is disrupted, but the ability to recognize non-

word sounds is spared (Hickok & Poeppel 2000; Poeppel 2001). Discussing such cases, 

Pinker and Jackendoff (2005, p. 207) add that “[c]ases of amusia and auditory agnosia, in 

which patients can understand speech yet fail to appreciate music or recognize 

environmental sounds…show that speech and non-speech perception in fact doubly 

dissociate.” Although as we saw in Chapter 4 dissociations are compatible with reuse—

indeed there is work suggesting that focal lesions can produce specific cognitive 

impairments within a range of nonclassical architectures (Plaut 1995)—and it is equally 

true that often the dissociations reported are noisy (Cowie 2008, § 3.6.3), still their very 

ubiquity needs to be taken seriously and accounted for in a more systematic fashion than 

many defenders of reuse have been willing to do (see e.g. Anderson 2010, p. 248; 2014, 

pp. 46-48). After all a major source of support for theories of reuse comes from the 

neuroimaging literature, which, as I have pointed out several times already, is somewhat 

ambiguous taken by itself. As Fedorenko et al. (2011, p. 16428) explain: 

 

standard functional MRI group analysis methods can be deceptive: two different 
mental functions that activate neighbouring but non-overlapping cortical regions 
in every subject individually can produce overlapping activations in a group 
analysis, because the precise locations of these regions vary across subjects, 
smearing the group activations. Definitively addressing the question of neural 
overlap between linguistic and nonlinguistic functions requires examining overlap 
within individual subjects, a data analysis strategy that has almost never been 
applied in neuroimaging investigations of high-level linguistic processing. 
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When Fedorenko and her colleagues applied this strategy themselves, they found that 

“most of the key cortical regions engaged in high-level linguistic processing are not 

engaged by mental arithmetic, general working memory, cognitive control or musical 

processing,” and they think that this indicates “a high degree of functional specificity in 

the brain regions that support language” (2011, p. 16431). While I do not believe that 

claims of this strength have the least warrant—as I shall explain, functional specificity 

cannot be established merely by demonstrating that a region is selectively engaged by a 

task—these results do at least substantiate the dissociation literature in an interesting way 

and make it more difficult for those who would prefer to dismiss the dissociations with a 

ready-made list of alternative explanations. Similar results were found by Fedorenko et 

al. (2012). 

 

I think neural redundancy is the best explanation for what we see in cases like 

these, and that redundancy is in fact a central feature of cortical design. As I briefly 

mentioned in Chapter 6, the brain incorporates a large measure of redundancy of function 

(Laurence & Margolis 2015, p. 126; Jungé & Dennett 2010, p. 278; Barrett & Kurzban 

2006, pp. 638-639; Anderson 2010, p. 296). Modules (M-networks) and similar structures 

in the brain fall in an iterative, repetitive and almost lattice-like arrangement in the 

cortex. Neighbouring modules have similar response properties: laminar and columnar 

changes are for the most part smooth—not abrupt—as one moves across the cortex, and 

adjacent modules do not differ markedly from one another in their basic structure and 

computations (if they even differ at all when taken in such proximity). Regional solitarity 

is therefore not likely to be a characteristic of the brain (Anderson 2014, p. 141).6 We do 

not, in all likelihood, have just one module for X, and one module for Y, but in effect 

several copies of the module for X, and several copies of the module for Y, all densely 

stuffed into the same cortical zones. As Buxhoeveden and Casanova (2002, p. 943) explain 

of neurons generally:  

 

In the cortex, more cells do the job that fewer do in other regions….As brain 
evolution paralleled the increase in cell number, a reduction occurred in the 
sovereignty of individual neurones; fewer of them occupy critical positions. As a 
consequence, plasticity and redundancy have increased. In nervous systems 

																																																								
6 The term “solitarity” is Anderson’s, but while he concedes that solitarity will be “relatively rare,” he does 
not appear to believe that anything particularly significant follows from this. See also Anderson (2010, p. 
296). 
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containing only a few hundred thousand neurones, each cell plays a more essential 
role in the function of the organism than systems containing billions of neurones. 

 

The same principle very likely holds for functionally distinct groupings of neurons (i.e. 

modules), as Jungé and Dennett conjecture: 

 

It is possible that specialized brain areas contain a large amount of 
structural/computational redundancy (i.e., many neurons or collections of 
neurons that can potentially perform the same class of functions). Rather than a 
single neuron or small neural tract playing roles in many high-level processes, it is 
possible that distinct subsets of neurons within a specialized area have similar 
competencies, and hence are redundant, but as a result are available to be assigned 
individually to specific uses….In a coarse enough grain, this neural model would 
look exactly like multi-use (or reuse). (2010, p. 278) 

 

This is plausibly why capacities which are functionally very closely related, but which for 

whatever reason are forced to recruit different neural circuits, will often be localized in 

broadly the same regions of the brain. For instance, first and second languages acquired 

early in ontogeny settle down in nearly the same region of Broca’s area; and even when 

the second language is acquired in adulthood the second language is represented nearby 

within Broca’s area (while artificial languages are not) (Kandel & Hudspeth 2013). The 

neural coactivation graphs of such C-networks must look very similar. Indeed these 

results suggest—and a Redundancy Model would predict—that two very similar tasks 

which for whatever reason are forced to recruit different neural circuits should exhibit 

similar patterns of activation. 

 

The significance of this simple but surprisingly neglected feature of cortical 

design cannot be overstated. For reasons I shall explain, I think it should rank alongside 

reuse as an organizing principle of the brain. What it means for reuse is quite interesting. 

Although there is abundant evidence of the reuse of the same neural tokens to accomplish 

different tasks (see Chapters 3 and 5), redundancy means we must accept that at least 

some of the time what we will really be witnessing is reuse of the same types to 

accomplish these tasks.7 To my mind this does not in any way diminish the standing of 

reuse. To the extent that a particular composite reuses types, and is pro tanto 

dissociable—residing in segregated brain tissue that is not active outside the function 
																																																								
7 For a developmental twist on the type/token distinction invoked in the context of modular theorizing 
about the mind, see Barrett (2006). 
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concerned—it is true that to that extent its constituents will appear to be domain-specific. 

But in this case looks will be deceiving. The classical interpretation of domain specificity 

assumes solitarity—that a module is unique in what it contributes (that a module for X 

does something which no other module can do as well). Dedication is not the same as 

domain specificity, and redundancy explains why. A composite will be dedicated without 

being domain-specific if its functional resources are accessible to other domains through 

the deployment (reuse) of neural surrogates (i.e. redundant or “proxy” tokens). In this 

case its constituents will be multi-potential but single-use (Jungé & Dennett 2010, p. 

278), and the domain specificity on display somewhat cosmetic. For instance, a set of 

modules that are structurally and computationally similar may be equally suited for face 

recognition tasks, abstract-object recognition tasks, the recognition of moving objects, 

and so on. One of these modules could be reserved for faces, another for abstract objects, 

another for moving objects, and so on—what is noteworthy is that while the functional 

activation may be indistinguishable in each case, and the same type of resource will be 

employed on each occasion, a different token module will be at work at any one time. To 

quote Jungé and Dennett again: 

 

In an adult brain, a given neuron [or set of neurons] would be aligned with only a 
single high-level function, whereas each area of neurons would be aligned with 
very many different functions. (2010, p. 278) 

 

To borrow a political slogan, such modules (and composites) will be “separate but equal.” 

The evidence of reuse is virtually all one way when it comes to the pervasiveness of 

functional inheritance across cognitive domains. It may be that this inheritance owes to 

reuse of the same tokens (literal reuse) or to reuse of the same types (reuse by proxy), but 

the inheritance itself has been amply attested. This broader notion of reuse still offers a 

crucial insight into the operations of cognition, and I dare say represents a large part of 

the appeal of the original massive redeployment hypothesis (Anderson 2007c).  

 

It is interesting to note in this respect that although detractors have frequently 

pointed out the ambiguity of neuroimaging evidence on account of its allegedly coarse 

spatial resolution (see § 3.3.3), suggesting that the same area will be active across separate 

tasks even if distinct but adjacent circuits are involved each time, this complaint can have 

no bearing whatsoever on reuse by proxy. Fedorenko et al. (2011, p. 16431) take their 
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neuroimaging evidence to support “a high degree of functional specificity in the brain 

regions that support language,” but their results do not license this extreme claim. The 

regions they found to have been selectively engaged by linguistic tasks were all adjacent to 

the regions engaged in nonlinguistic tasks. Elementary considerations suggest that they 

have discovered a case of reuse by proxy involving language: the domains tested (mental 

arithmetic, general working memory, cognitive control and musical processing) make use 

of many of the same computations as high-level linguistic processing, even though they 

run them on duplicate hardware. Redundancy makes it is easy to see how fairly sharp 

dissociations could arise—knocking out one token module need disrupt only one high-

level operation: other high-level operations that draw on the same type of resources may 

well be spared. 

 

The consequences of this distinction between literal reuse and reuse by proxy for 

much speculation about the localization and specialization of function are potentially 

profound. In cognitive neuropsychology the discovery that a focal lesion selectively 

impairs a particular cognitive function is routinely taken as evidence of its functional 

specificity (Coltheart 2011; Sternberg 2011). Even cognitive scientists who take a 

developmental approach to modularity, i.e. who concede that parts of the mind may be 

modular but stress that modularization is a developmental process, concede too much 

when they imply, as they frequently do, that modularization results in domain-specific 

modules (Karmiloff-Smith 1992; Prinz 2006; Barrett 2006; Cowie 2008; Guida et al. 

2016). This is true in some sense, but not in anything like the standard sense, for the 

Redundancy Model envisages that developmental modules form a special class of C-

networks, namely those which are “separate but equal.” The appearance of 

modularization in development is thus fully compatible with deep domain 

interpenetration. In any event the Redundancy Model does not predict that all acquired 

skills will be modular. The evidence suggests that while some complex skills reside in at 

least partly dissociable circuitry, most complex skills are implemented in more typical C-

networks (i.e. those consisting of literally shared parts).8 

 

Asking why the cortex incorporates a large measure of redundancy of function is a 

bit like asking why we have two eyes, two kidneys, ten toes, and so on. The intuitive 

																																																								
8 This seems to be true regardless of whether the complex skills are innate or acquired. 
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response is that by having “spare” organs we can distribute the workload more efficiently 

among all of them, and that it is generally a good design feature of any system to have 

spare capacity: having back-up cortical tissue makes sense, just like having a spare car tyre 

in the boot makes sense. These are good reasons for evolution to have seen to it that our 

brains have spare capacity. But in the case of the brain and the cortex most especially, I 

think there are other reasons why redundancy would be an important design feature. It 

offers a solution to what Jungé and Dennett (2010, p. 278) called the “time-sharing” 

problem. It may also offer a solution to what I call the “encapsulation” problem. 

 

The time-sharing problem arises when multiple simultaneous demands are made 

on the same cognitive resource. This is probably a regular occurrence, and language in 

particular would present a whole host of opportunities for time-sharing. Here are just a 

few examples. 

 

• Driving a car and holding a conversation at the same time: if it is true that some of 

the selfsame motor operations underlying aspects of speech production and 

comprehension are also required for the execution of sequenced or complex motor 

functions (as perhaps exemplified by driving a manual vehicle, or operating 

complex machinery), how do we manage to pull this off?  

• By reflecting the recursive structure of thought, the coding function may redeploy 

the recursive operation simultaneously during sentence production. This might 

be the case during the formation of an embedded relative clause—the thought and 

its encoding may require parallel use of the same sequencing principle. Again, 

how do we manage this feat?  

• If metarepresentational operations are involved in the internalization of 

conventional sound-meaning pairs, and also in the pragmatics and mindreading 

that carry on simultaneously during conversation, as argued by Suddendorf 

(2013), it could be another instance of time-sharing. The example is contentious, 

but it still raises the question: how does our brain manage to do things like this? 

• Christiansen and Chater’s (2016) “Chunk and Pass” model of language processing 

envisages multilevel and simultaneous chunking procedures. As they put it, “the 

challenge of language acquisition is to learn a dazzling sequence of rapid 
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processing operations” (2016, p. 116). What must the brain be like to allow for 

this dazzling display? 

 

Explaining these phenomena is difficult. Indeed when dealing with clear (literal) 

instances of reuse, interference paradigms show that processing bottlenecks are 

inevitable—true multi-tasking is impossible (see § 4.2.3). Redundancy offers a natural 

explanation of how the brain overcomes the time-sharing problem. It explains, in short, 

how we are able to “walk and chew gum” at the same time. 

 

Redundancy might also offer a solution to the encapsulation problem. As I 

explained in § 4.2.3, functional composites are not likely to be characterized by 

informational encapsulation because in sharing their parts with other systems they will 

prima facie have access to the information stored and manipulated by those other systems 

(Anderson 2010, p. 300). If overlapping brain networks must share information on some 

level (Pessoa 2016, p. 23), it would be reasonable to suppose that central and peripheral 

systems do not overlap. This is because peripheral systems, which are paradigmatically 

fast and automatic, would not be able to process inputs as efficiently if there were a 

serious risk of central system override—i.e. of beliefs and other central information 

getting in the way of automatic processing. But we know from the neuroimaging 

literature that quite often the brain networks implementing central and peripheral 

functions do overlap. This is puzzling in light of the degree of cognitive impenetrability 

that certain sensory systems still seem to exhibit—limited though it may be. If it is 

plausible to suppose that the phenomenon calls for segregated circuitry, redundancy 

could feature in a solution to the puzzle, since it naturally explains how the brain can 

make parallel use of the same resources. Neuroimaging maps might well display what 

appears to be overlapping brain regions between two tasks (one involving central 

information, the other involving classically peripheral operations), but the overlap would 

not exist—there would be distinct albeit adjacent and nearly identical circuits recruited in 

each case. Of course there may be other ways around the encapsulation problem that do 

not require segregated circuitry: the nature and extent of the overlap is presumably 

important. But clearly redundancy opens up some fascinating explanatory possibilities. 
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To the extent that acquired skills must overcome both the time-sharing problem 

as well as the encapsulation problem—for acquired competencies are often able to run 

autonomously of central processes—we might expect that their neural implementations 

incorporate redundant tissue. In concluding, let me illustrate this point by offering a gloss 

on a particular account of how skills and expertise are acquired during development 

elaborated by Guida et al. (2016) and Anderson (2014). The process involved is called 

“search.” Search is an exploratory synaptogenetic process, “the active testing of multiple 

neuronal combinations until finding the most appropriate one for a specific skill, i.e., the 

neural niche of that skill” (Guido et al. 2016, p. 13). The theory holds that in the early 

stages of skill acquisition, the brain must search for an appropriate mix of brain areas, and 

does so by recruiting relatively widely across the cortex. When expertise has finally 

developed, a much narrower and more specific network of brain areas has been settled 

upon, such that “[a]s a consequence of their extended practice, experts develop domain-

specific knowledge structures” (Guido et al. 2016, p. 13). The gloss (and my hunch) is 

this: first, that repeated practice of a task that requires segregation (to get around time-

sharing and encapsulation issues) will in effect force search into redundant neural 

territory (Karmiloff-Smith 1992; Barrett 2006; Barrett & Kurzban 2006); second, that 

search will recruit idle or relatively underutilized circuits in preference to busy ones as a 

general default strategy. Guido et al. (2016) cite evidence that experts’ brains reuse areas 

for which novices’ brains make only limited use: “novices use episodic long-term memory 

areas (e.g., the mediotemporal lobe) for performing long-term memory tasks,” but 

“experts are able to (re)use these areas also for performing working-memory tasks” 

(Guido et al. 2016, p. 14). Guido et al., in agreement with Anderson (2014), seem to have 

literal reuse in mind. But the same evidence they cite is consistent with reuse by proxy. 

As Barrett and Kurzban (2006, p. 639) suggest, echoing a similar suggestion by 

Karmiloff-Smith (1992), a developmental system 

 

could contain a procedure or mechanism that partitioned off certain tasks—
shunting them into a dedicated developmental pathway—under certain 
conditions, for example, when the cue structure of repeated instances of the task 
clustered tightly together, and when it was encountered repeatedly, as when 
highly practiced….Under this scenario, reading could still be recruiting an 
evolved system for object recognition, and yet phenotypically there could be 
distinct modules for reading and for other types of object recognition. 
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7.6 SUMMARY 

 

On any reasonable construal of the language faculty, language is not cognitively special 

vis-à-vis other cognitive domains. There seems to be no language module, no elementary 

linguistic unit, no hardwired language organ. Language was likely assembled from older 

sensory-motor and nonlinguistic materials. Neuroimaging, biobehavioural, 

computational, typological and evolutionary considerations all point to the same 

conclusion. Such linguistic adaptations as there have been have been coopted in many 

other domains of cognition. The sort of cultural environment in which language consists 

is too unstable to provide the conditions for typical selection scenarios in which robust 

phenotypes can emerge, and the brain anyway negotiates energetic constraints by 

repurposing existing resources to meet new challenges. Language acquisition frequently 

does seem effortless on the child’s part, and exhibits a degree of developmental 

robustness. But the ease of acquisition has been exaggerated—the child’s environment is 

not as impoverished as was once assumed. In any case this apparent ease can be explained 

other than by postulating exotic and impossible-to-evolve circuitry. Language has been 

shaped by the brain far more than the brain has been shaped by language. Cultural 

evolution is a powerful factor in human history, and is more than sufficient to explain 

why languages seem to run so well with the grain of the human mind. It is true that 

language dissociates from other cognitive skills, at least in some respects, but the 

Redundancy Model puts this sort of modularization in its proper context. The 

Redundancy Model predicates functional inheritance across tasks and task categories even 

when the tasks are implemented in spatially segregated neural networks. Thus 

dissociation evidence alone does not always indicate functional specificity. In particular, 

these dissociations provide no evidence that language is cognitively special. 
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8 
_____ 

 

Saving faculty psychology:  

Debunking the argument from multiple realization 

 

 

 

 

 

 

8.1 NEW DIRECTIONS IN FACULTY PSYCHOLOGY 

 

The discovery that traditional psychological faculties are implemented by neural systems 

consisting of shared domain-general components does not make traditional faculty 

psychology go away. On the contrary, as I argued in § 4.2.3, these high-level cognitive 

systems—I decline to call them modules—have an important role to play in our ongoing 

quest to understand the mind. The ramifications of reuse will in fact serve to sharpen our 

understanding of what makes these systems tick and reveal the extent of functional and 

semantic inheritance between traditional tasks and task categories. A mature, twenty-first 

century faculty psychology, therefore, has a lot to look forward to—and essentially 

nothing to fear. But if the work required to understand behaviour in the light of neural 

reuse is going to get done by anyone, it will have to get done (one would think, in the first 

instance at least) by twenty-first century faculty psychologists! All those with a wealth of 

experience investigating the higher faculties will simply have to get on board if the 

endeavour is to have any chance of success. In other words the future of faculty 

psychology depends in no small part on the productive collaboration between 

neuroscience and psychology. 

 

Unfortunately, there is a potential obstruction in the way of just this sort of 

intertheoretic collaboration. Inasmuch as high-level cognitive systems are understood to 

be software systems, pitched at the level of algorithmic or computational psychology, the 
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thought arises that these systems can be investigated with a kind of disciplinary immunity 

from neuroscience, since (it is supposed) “[n]o amount of knowledge about the hardware 

of a computer will tell you anything serious about the nature of the software that 

computer runs” (Coltheart 2004, p. 22). The idea proceeds from the assumption that 

psychological processes are multiply realized. The multiple realization (“MR”) 

hypothesis asserts, at its baldest, that the same psychological state may be realized in 

neuroscientifically distinct substrates (Polger 2009). Hilary Putnam’s (1967) ingenious 

suggestion that “pain” is likely to be a multiply realized kind (“MR kind”) rather neatly 

captures the thought here—while presumably both mammals and mollusks experience 

pain, they pretty obviously lack the same neurobiological basis. MR was played against a 

popular philosophical theory of mind in the 1960s which attempted to identify mental 

states with neural states. Since MR implies a many-to-one mapping from neural states to 

mental states, if it is in fact true that mental states are multiply realized it follows that no 

clear identity relation can hold between them. Thus it was that many of those who 

advanced MR rejected mind-brain identity as a viable philosophical theory. As Bechtel 

and Mundale (1999, p. 176) frame the issue, “[o]ne corollary of this rejection of the 

identity thesis is the contention that information about the brain is of little or no relevance 

to understanding psychological processes.”  

 

Another development of the argument asserts that even if MR does not hold 

among existing biological systems, the possibility that cognitive states might be shared by 

built artifacts or alien life forms having very different physical structures in itself 

establishes the salience of the MR thesis. This version of the argument led some 

philosophers of AI to embrace the further metaphysical claim that “mental processes are 

the operations themselves, and are not identified with whatever biological or other 

substances realize them” (Bechtel & Mundale 1999, p. 176). Following Bechtel and 

Mundale’s lead, and the contours of the recent debate surrounding MR, I shall not 

address this version of the argument or the metaphysical claim which it inspired here. 

The possibility that artifacts could have mental states is just the possibility that the 

identity theory is wrong, which is precisely the claim in dispute (Polger 2009, p. 459). 

Instead, I shall use this chapter to consider, admittedly quite briefly, the empirical 

claim—that the MR hypothesis can be verified having regard to existing organisms—



 150 

since no doubt it is this claim that has played the lion’s share in encouraging a downbeat 

attitude to evidence from neuroscience in some quarters. 

 

Daniel Dennett (1991, pp. 254, 270, n. 2), for instance, laments the functionalist’s 

penchant for “boxology,” i.e. drawing diagrams that install component functions in 

separate boxes, “while explicitly denying that these boxes have anatomical significance.” 

While he concedes that “in principle” it may be a good tactic, and one which he himself 

has employed, “it does tend to blind the functionalist to alternative decompositions of 

function, and particularly to the prospect of [neural reuse].” Small wonder then that he 

calls for a “better vision, anchored in a positive acceptance—as opposed to a hysterical 

dismissal—of the foundational facts of functional neuroanatomy” (see also McGeer 2007; 

Hardcastle & Stewart 2009, p. 194; Karmiloff-Smith 1994, p. 702; Bechtel 2008a, p. 990; 

Gerrans 2014, pp. 22-23). In § 8.2 below I put the two primary empirical arguments in 

favour of MR under pressure, as well as offer a survey of recent arguments skeptical of 

the MR hypothesis. 

 

But let me be clear at the outset. My position is in no way hostage to the fortunes 

of MR, however one cares to define it. There are other ways to argue for the pertinence of 

neuroscience to psychology that need not presuppose type identity among cognitive and 

neural states. I can think of at least three. For one thing, it does not pay to have an 

uncompromisingly rigid understanding of the reduction relation. John Bickle (2010, pp. 

250-251; 1998, p. 30) appeals to examples of successful reduction from the history of 

science that happened to involve MR kinds as among the posits of the reduced theories, 

including examples of reduction involving radical MR—that over distinct physical states 

occurring within the same token physical system at different times. The reduction of 

temperature to mean molecular kinetic energy could be considered to involve radical MR, 

since classical thermodynamic kinds like temperature are in truth macroscopic states 

multiply realized over different microstates of the same macroscopic system over time. 

And yet the reduction of classical thermodynamics to the kinetic/corpuscular theory of 

matter is “the textbook example of scientific intertheoretic reduction.” In another vein, 

Jaegwon Kim (1992), Larry Shapiro (2000) and Colin Klein (2008) have each drawn 

attention to a significant dilemma confronting the MR advocate. If a given functional 

kind is not multiply realized, the traditional argument for its autonomy and irreducibility 
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falls away. If on the other hand the kind is multiply realized, the kind will not be a proper 

scientific kind, i.e. of the sort that can enter into laws. “Brittleness” might be a multiply 

realized property, but glass, steel and biscuits are each brittle in their own way: there can 

be no general science of brittle things. Ranging over such genuinely diverse physical 

realizations means the kind will not enter into laws (i.e. exhibit lawlike or projectable 

properties), except for those which are true analytically—such as all mousetraps catch 

mice, and all eyes see—and this in turn “undercut[s] the traditional motivation for 

admitting functional kinds into the ontologies of the special sciences” (Shapiro 2000, p. 

637). Thus if mental states really are multiply realized, neuroscience will matter very 

much indeed—not so much because psychology could not do without it, but because 

psychology’s claim to be a traditional science would be open to question. This is only the 

most skeptical conclusion one could draw, but the point is well-taken (see Couch 2009a, 

pp. 262-264 for criticisms, however). Finally, and somewhat trivially, multiply realizable 

does not mean infinitely realizable. Cognitive hypotheses will always have implications for 

realizers—mousetraps cannot be made of paper after all. A functionalist psychology, this 

is to say, can proceed only within the biophysical limits that its own constructs impose, 

and ignores evidence of implementation to its peril. Take modularity as an example. A 

commitment to modularity standardly entails a belief in the functional dissociability of at 

least some cognitive capacities; but this, as we saw in Chapters 4, 5 and 7, is just not the 

sort of feature which the evidence of reuse makes available, at any rate in a 

straightforward manner. Of course neural hypotheses may themselves be disconfirmed by 

evidence coming from other branches of the cognitive sciences, including psychology, so 

the constraints here are genuinely bidirectional and intertheoretic. But MR or not, there 

is simply no way of getting around the neuroscience (McGeer 2007). 

 

Be that as it may, given the recent tide of empirical challenges to the MR thesis, 

and because MR has proven itself to be an occasional stumblingblock in the path of those 

committed to the autonomy of the special sciences, I have considered it worthwhile saying 

at least something on the subject. While the more austere school of functionalism 

admittedly no longer enjoys the following it once had—and mainstream functionalists 

today would hardly dismiss neuroscience on the basis of psychology’s autonomy of 

neuroscience—pockets of the austere school do survive under the guise of cognitive 

neuropsychology and related fields (see McGeer 2007 for detailed analysis and criticism). 
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8.2 MULTIPLE REALIZATION REVISITED 

 

8.2.1 Preliminary remarks 

 

Two primary empirical arguments have been advanced at one time or another in support 

of the view that cognitive states are multiply realized. One argument proceeds from 

evidence of extensive neuroplasticity in the brain. The other proceeds from an account of 

convergent evolution. In the first part of this section I shall briefly address these 

arguments for MR and the existence of MR kinds. In the second part I provide a 

conspectus of the most forceful arguments against MR developed in recent years. 

 

8.2.2 Empirical arguments for multiple realization 

 

8.2.2.1 Neuroplasticity 

 

Neuroplasticity has in recent times been thought to provide compelling evidence for the 

MR of mental states. Shapiro (2004) and Polger (2009) review this evidence and find that 

it does not provide evidence of MR. Polger (2009, p. 470) concludes that “contrary to 

philosophical consensus, the identity theory does not blatantly fly in the face of what is 

known about the correlations between psychological and neural processing.” 

 

 As we saw in Chapter 2, there is more than one kind of brain plasticity, including 

inter alia cortical map plasticity and synaptic plasticity. Very roughly, the former occurs 

when different brain regions subserve the same function at different times in an 

individual’s history, say, after brain injury or trauma, and it is this plasticity which is 

most often regarded as supporting MR. Synaptic plasticity refers to the strengthening or 

weakening of connections between neurons, and is believed to have a role in learning and 

memory (and quite possibly, therefore, in cortical map plasticity). I shall restrict myself to 

the first kind here. 

 

 Evidence telling against type distinct kinds, and therefore supporting a modest 

identity relation holding between psychology and neuroscience, includes the following 

(Polger 2009, pp. 467-468). 
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• Cortical maps do not migrate wildly, i.e. they do not simply “ ‘jump’ to recruit 

unused but non-adjacent cortical areas,” and when they appear to do so it is 

generally to exploit the structural features common to different sites (see e.g. the 

discussion of EB in Chapter 6). 

• Recovered functions are frequently suboptimal—genuine MR would require the 

same psychological state to be underwritten by different neurological states; 

suboptimality is evidence that the psychological states are in fact different, and 

therefore evidence of difference underlying difference, not difference underlying 

sameness, as MR requires. Actually this argument requires care. It only goes 

through if it can be shown that there is a distinct function served by the two 

psychological states. I address this matter in the next chapter. 

• Functional studies of the rewired ferrets whose visual cortex was induced to 

project into auditory cortex suggest they “developed processing structures—in 

particular, columnar organization—that is [sic] typical of visual processing” 

within auditory cortex. Since auditory cortex came to resemble visual cortex 

(Shapiro 2008, p. 518), this is not evidence that auditory regions learned to handle 

visual domain tasks while still in their auditory configuration, as genuine MR 

would require here. After all, auditory regions have specific neural configurations 

and connection patterns. If these are not preserved when the ferret’s auditory 

cortex begins processing visual input, it cannot be a case of MR. What we have is 

a case of sameness underlying sameness, not difference underlying sameness, as 

MR requires. Put another way, the studies are reporting a genuine case of 

crossmodal plasticity (or perhaps supramodal plasticity), not MR (see §§ 2.4.2-

2.4.3). 

 

In fact it is unsurprising that neuroplasticity has not been able to deliver up the expected 

argosy of empirical support for MR, and this for two reasons. Firstly, many of the most 

sophisticated brain imaging techniques to date have not been able to yield high resolution 

mappings of the neural configurations implicated in rehabilitation after injury. Neither 

positron emission tomography (PET) nor fMRI measures neural activity and network 

configuration directly. What they measure, in fact, is blood flow, which can hardly tell us 

much about whether the functions in question are multiply realized. Even if MR were 
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pervasive, these methods would not yield coherent, interpretable results. Why then 

assume that a recovered function with a new location should have a different realization 

basis, unless of course there is some other indication that makes it likely (e.g. 

simultaneous preservation of the old and recovered function in the new area)? Secondly, 

without standardized criteria for evaluating sameness/difference judgments, how can we 

be sure that neuroplasticity even speaks to MR? I conveniently neglected this 

consideration when making the points above, and in fact it is only in recent years that 

more careful attention has been paid to questions of sameness and difference in debates 

about MR. I take this up in § 8.2.3.4. 

 

8.2.2.2 Convergent evolution 

 

Evolutionary considerations, particularly the idea that convergent evolution is likely to 

generate psychological similarities as well as behavioural similarities (such as flight in 

birds and bats) in morphologically unrelated species, have been thought to weigh in 

favour of MR. But the issue cannot be decided a priori. MR is an empirical hypothesis in 

the end and must sooner or later come to terms with empirical evidence. In fact, 

evolutionary considerations might actually tell against MR. Here I cite only one case, 

detailed at greater length in Bickle (2003; 2010). The process by which short-term 

memory becomes long-term memory is known as memory consolidation, and Bickle cites 

evidence supporting the likelihood of there being shared molecular mechanisms for 

memory consolidation across biological taxa as diverse as fruit flies, sea slugs and mice. 

One might not think this sort of evidence admits of any far-reaching consequences for 

human psychology or MR generally, but if the instance is seen to follow from certain 

“core principles of molecular evolution,” it assumes a larger significance. One such 

principle holds that the amino acid sequences of specific proteins in functionally 

important, “constrained,” domains change much more slowly than in functionally less 

important domains. This principle implies the existence of “universally conserved” 

molecular mechanisms across distantly related biological species, albeit those found deep 

down in cellular physiology and intracellular signaling pathways, just as the 

fly/slug/mouse pathway attests. 

 

In the end, any psychological kind that affects an organism’s behavior must 
involve the cell-metabolic machinery in individual neurons. In the brain, causally 
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speaking, that’s where the rubber hits the road. But that’s the very machinery 
[that] tends to be conserved evolutionarily across existing biological species. 
Random changes to its components, especially to amino acid sequences in its 
proteins’ constrained domains (almost) inevitably are detrimental to an organism’s 
survival. (2010, p. 258) 

 

Far from being exceptional, “molecular evolution suggests [such mechanisms] should be 

the rule.” So at least this empirical argument, rooted in considerations of evolutionary 

plausibility and molecular evolution, predicts that the MR thesis is false at the molecular 

level, if not at the systems level (see also Hawrylycz 2015, pp. 8-9; Koch 2015, p. 26 and 

Zador 2015, p. 43). 

 

8.2.3 A conspectus of recent arguments against multiple realization 

 

8.2.3.1 Outline of arguments 

 

The most powerful arguments against the MR hypothesis as presented in the recent 

literature include: 

 

• the argument from comparative psychology (Bechtel & Mundale 1999); 

• the argument from grains (Bechtel & Mundale 1999); and 

• the argument from context (Bechtel & Mundale 1999; Shapiro 2000; Polger & 

Shapiro 2008; Shapiro & Polger 2012). 

 

8.2.3.2 The argument from comparative psychology 

 

Bechtel and Mundale (1999) appeal to “neurobiological and cognitive neuroscience 

practice” in the hope of showing how claims that psychological states are multiply 

realized are unjustified. Essentially, theirs is an argument from success: cognitive 

neuroscience’s method assumes MR is false, and the success of that method is evidence 

that MR is false. They argue that it is “precisely on the basis of working assumptions 

about commonalities in brains across individuals and species that neurobiologists and 

cognitive neuroscientists have discovered clues to the information processing being 

performed” (1999, p. 177). 
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 Bechtel and Mundale examine both the “neuroanatomical and neurophysiological 

practice of carving up the brain.” What they believe this examination reveals is, firstly, 

that the principle of psychological function plays an essential role in both disciplines, and 

secondly, that “the cartographic project itself is frequently carried out comparatively—

across species” (1999, p. 177), the opposite of what one would expect if MR were “a 

serious option.” It is the very similarity (or homology) of brain structures which permits 

generalization across species; and similarity in the functional characterization of 

homologous brain regions across species only makes sense if the claims of MR are either 

false or greatly exaggerated. For instance, “[e]ven with the advent of neuroimaging, 

permitting localization of processing areas in humans, research on brain visual areas 

remains fundamentally dependent on monkey research…” (1999, p. 195). Brodmann’s 

famous brain maps were based upon comparisons of altogether 55 species and 11 orders 

of mammals. If MR were true, “one would not expect results based on comparative 

neuroanatomical and neurophysiological studies to be particularly useful in developing 

functional accounts of human psychological processing” (1999, p. 178). They also argue 

that the ubiquity of brain mapping as a way of decomposing cognitive function points to 

the implausibility of the MR thesis. The understanding of psychological function is 

increasingly “being fostered by appeal to the brain and its organization” (1999, p. 191), 

again, the opposite of what one would expect “[i]f the taxonomies of brain states and 

psychological states were as independent of each other as the [MR] argument suggests” 

(1999, pp. 190-191). 

 

Aizawa (2009, pp. 500-503) detects a tacit claim in Bechtel and Mundale to the 

effect that unique cross-species localization of functions in the brain entails their unique 

realization. This is thought to be a non sequitur. It is true that, strictly speaking, what 

much of their paper succeeds in showing is the unlikelihood of “multiple localization,” 

but two things can be said in response. Firstly, the criticism to some extent misses the 

point of their analysis. Bechtel and Mundale have deliberately opted for functional 

localization, i.e. brain activity in the same parts or conglomerate of parts across species, as 

the relevant standard by which to judge the sameness or difference of brain states, and 

they have done so in deference to cognitive neuroscience practice. Localization is for 

them the appropriate standard to adopt because it is at the right grain of description (see 

next section). Secondly, it is not actually easy to police the distinction between 
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localization and realization, for neural localization is an important dimension of neural 

organization. Aizawa complains that Bechtel and Mundale do not provide independent 

evidence in support of any such proposition, but, all in all, it does not seem to be a 

particularly tendentious one.1 It is true that, for all we know, functions could be localized 

in the same region in closely related species, and yet be organized very differently. But 

surely we would need some reason to think that this is likely. 

 

A more serious criticism of their argument is that it speaks only to species that are 

homologous—it might demonstrate that the ubiquity of MR is questionable so long as we 

restrict our gaze to primates and rodents (i.e. mammals generally, related by common 

descent), but surely it does not succeed in showing that octopuses and humans realize 

their psychologies in anything like the same way (Kim 2002; Shapiro 2008). Nevertheless, 

the arguments grounded in methodological and comparative considerations offer an 

impressive refutation of MR among the many which have been attempted in the past 

fifteen or so years. Clearly there is some notion of similarity at stake here which, while 

largely unarticulated in Bechtel and Mundale, ultimately needs to be reckoned with—at 

least among homologues (cf. Gillett 2002; 2003; Polger & Shapiro 2008). 

 

Next I present two distinct but related arguments, the argument from grains and 

the argument from context. Bechtel and Mundale have something to say about both, 

whereas Shapiro confines his analysis, so far as we shall be concerned, to the import of 

context alone. 

 

8.2.3.3 The argument from grains 

 

Bechtel and Mundale (1999, pp. 178-179, 201-204) resort to grains as a way of making 

sense of what they perceive to be the entrenched, almost unquestioning consensus 

prevailing around MR. They think this can be traced to the practice of philosophers 

appealing to different grain sizes in the taxonomies of psychological and brain states, 

“using a coarse grain in lumping together psychological states and a fine grain in splitting 

brain states.” When Putnam went about collecting his various specimens of pain, he 

																																																								
1  It only appears to be tendentious when a certain paradigm of realization and MR, the so-called 
“dimensioned” view, has one under its sway (see Gillett 2003). 
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ignored the many likely nuances between them. At the same time, he had few 

compunctions about declaring them different at a neurological level. His contention that 

pain is likely to be an MR kind can only command our respect if we can be sure that when 

he was comparing his specimens from a neurological point of view he was careful to apply 

no less lenient a standard of differentiation than he applied when comparing his 

specimens from a psychological point of view. Bechtel and Mundale maintain that when 

“a common grain size is insisted on, as it is in scientific practice, the plausibility of 

multiple realizability evaporates.” As their examples of neuroanatomical and 

neurophysiological practice attest, scientists in these fields typically match a coarse-

grained conception of psychological states with an equally coarse-grained conception of 

brain states. Despite the habit of philosophers individuating brain states in accordance 

with physical and chemical criteria, a habit no doubt originating with Putnam, this is not 

how neuroscientists characterize them. The notion of a brain state is “a philosopher’s 

fiction” (1999, p. 177) given that the notion neuroscientists actually employ is much less 

fine-grained, namely “activity in the same brain part or conglomerate of parts.” 

 

 While sympathetic to this argument, I think it really works in one direction 

alone—namely, when refuting the MR advocate who has helped herself to a fine-grained 

notion of a brain state, while assuming a coarse-grained notion of a mental state. In other 

cases, I think the argument as put is quite problematic. For completeness, and because it 

is a highly influential argument, I shall elaborate upon the argument’s strengths and 

weaknesses in the following chapter. 

 

8.2.3.4 The argument from context 

 

A not unrelated factor which Bechtel and Mundale think might help explain the 

prevailing MR consensus in philosophy and the mind sciences is that the hypothesis itself 

is often presented in a “contextual vacuum.” The choice of grain is always determined by 

context, with “different contexts for constructing taxonomies” resulting in “different 

grain sizes for both psychology and neuroscience.” The development of evolutionary 

perspectives, for instance, in which the researcher necessarily adopts a coarse grain, 

contrasts with the much finer grain that will be appropriate when assessing differences 

among conspecifics. “One can adopt either a coarse or a fine grain, but as long as one uses 
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a comparable grain on both the brain and mind side, the mapping between them will be 

correspondingly systematic.” 

 

 Shapiro (2000), more alive than most to the acuteness of the metaphysical 

problem that is central to MR, has provided perhaps the most useful and philosophically 

perceptive treatment of sameness/difference judgments as they touch upon MR. He 

states: 

 

Before it is possible to evaluate the force of [the MR thesis] in arguments against 
reductionism, we must be in a position to say with assurance what the satisfaction 
conditions for [the MR thesis] actually are. (2000, p. 636) 

 

For him: 

 

The general lesson is this. Showing that a kind is multiply realizable, or that two 
realizations of a kind are in fact distinct, requires some work. (2000, p. 645) 

 

And: 

 

To establish [the MR thesis], one must show that the differences among 
purported realizations are causally relevant differences. (2000, p. 646) 

 

Shapiro’s concerns revolve around what motivates ascriptions of difference, and therefore 

sameness. The issue is important because the classic intuition pump that asks us to 

conceive a mind in which every neuron has been replaced by a silicon chip depends on 

our ascription of an interesting difference between neurons and silicon chips, apparently 

even where silicon chips can be made that contribute to psychological capacity by one and 

the same process of electrical transmission. His answer too, like Bechtel and Mundale’s, 

depends ultimately on context—in particular, the context set by the very inquiry into MR 

itself. 

 

Shapiro (2000, pp. 643-644) argues that “the things for which [the MR thesis] has 

a chance of being true” are all “defined by reference to their purpose or capacity or 

contribution to some end.” This is the reason why carburetors, mousetraps, computers 

and minds are standard fare in the literature of MR. They are defined “in virtue of what 

they do,” unlike, say, water, which is typically defined by what it is, i.e. its constitution or 
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molecular structure, and accordingly not an MR kind. Genuine MR requires that there 

be “different ways to bring about the function that defines the kind.” Truly distinct 

(indeed multiple) realizations are those that “differ in causally relevant properties—in 

properties that make a difference to how [the realizations] contribute to the capacity 

under investigation.” Two corkscrews differing only in colour are not distinct realizations 

of a corkscrew, because colour “makes no difference to their performance as a corkscrew.” 

Similarly, the difference between steel and aluminium is not enough to make two 

corkscrews that are alike in all other respects two different realizations of a corkscrew 

“because, relative to the properties that make them suitable for removing corks, they are 

identical.” In this instance, differences of composition can be “screened off.” Naturally 

there may be cases where differences of composition will be causally relevant—perhaps 

rigidity is the allegedly MR kind in question, in which case compositional differences will 

necessarily speak to how aluminium and steel achieve this disposition. Each case must 

simply be judged on its own merits, indeed in its own context (as Bechtel and Mundale 

might put it). Thus unlike the two corkscrews identical in all respects save colour, which 

do not count as distinct realizations, waiter’s corkscrews and winged corkscrews are 

enabled to perform the same task in virtue of different causally relevant properties, and 

therefore do count as genuinely distinct realizations of a corkscrew, one based on the 

principle of simple leverage, the other relying on a rack and pinions (see Fig. 1).  

 

 

(a)   (b)  

 

Figure 1. A waiter’s corkscrew (a) and a winged corkscrew (b). Each contributes to the capacity of cork-
removal in different ways. 
 

 

The problem for the MR advocate is this: it is apparent that each of the examples 

just given involves a straightforward mechanism that renders its classification reasonably 

intuitive (though I dare say still subject to the odd disagreement!). With the brain the 

situation is inestimably more complicated, so why should the MR advocate feel so 
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confident that there is more than one truly distinct way to build a mind, given that we 

know comparatively little about how brains produce minds in the first place? One might 

even think that the brain’s functional properties would need to be understood at least as 

well as the corkscrew’s before one could venture an opinion about whether truly different 

brains can produce similar minds.2  

 

I shall have more to say about Shapiro’s analysis in the next chapter, because I 

think it gets to the heart of the problem facing the functionalist. It is too often assumed 

that MR is ubiquitous, and that the onus is on the identity theorist to prove otherwise. 

Shapiro’s analysis explains why establishing that a kind is an MR kind actually takes 

work. 

 

8.2.4 Conclusion 

 

The primary empirical arguments for MR resting on weak evidence at best, the 

functionalist has more work to do before she can, by her lights with a clean conscience, 

look askance at the neural evidence and its implications for cognitive theorizing. 

 

8.3 NEW LOOK FACULTY PSYCHOLOGY 

 

Exactly how the science of mental faculties will have to change to accommodate the 

reality of neural reuse is a matter of some uncertainty, but even those such as Michael 

Silberstein who assert that “the autonomy and irreducibility of folk psychology are 

assured” concede that reuse means “scientific psychology must be heavily revised” (2016, 

pp. 27-28). My position, and the position which it was the aim of the previous section to 

make feasible, is that psychology and neuroscience are friends not enemies. I start from 

the premise that the best way to understand something is to break it down, and that the 

best and most natural way to break something down is to carve it at its joints, i.e. in such a 

way as to respect its physical constitution and design. I take this to be near truism. Now 

the fact remains that, as I have tried to show, the endeavour to understand the mind has 

come a long way from the days when Herbert Simon and David Marr reasoned from 

																																																								
2 Shapiro and Polger (2012, p. 282) elaborate upon Shapiro’s (2000) pragmatic considerations and attempt 
to situate his criteria within a somewhat more formal rubric. See also Shapiro (2008, pp. 522-525); Polger 
(2008); Polger (2009, pp. 463-464) and Polger and Shapiro (2016). 
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evolutionary principles that the carve-up of relevance to the mind produces 

independently modifiable subcomponents that correspond to functionally specific units of 

high-level psychology (Sternberg 2011, p. 158). I am not saying that the mind is bereft of 

dissociable subcomponents (see Chapters 4 and 5), but our ideas about them have 

certainly changed. So long as psychology wishes to carve nature at its joints, then, it will 

have to update its ideas about what those joints are. At a minimum, neural reuse 

mandates an approach to decomposition which assigns domain-neutral functional 

assignments to brain regions; and if such regions are the stuff of higher level cognition, it 

is surely not reasonable to insulate the higher level cognitive ontology from their effects. 

One does not have to be a ruthless reductionist or eliminativist to recommend that our 

sciences so develop as to facilitate mutual interaction and even potentially unification. If 

this is right, cognitive models of distinct domains should be placed upon such a footing as 

will best accommodate the possibility of interaction. We will learn more about the 

faculties, not less, if we can appreciate their deeper level associations. It is interesting to 

note in this respect that the 2010 edition of David Marr’s Vision—a book which is 

(in)famous for having made the strict independence between levels of inquiry an article of 

faith in the cognitive sciences—contains an afterword that chimes nicely with the message 

I am trying to convey here:  

 

(1) insights gained on higher levels help us ask the right questions and do the right 
experiments at the lower levels, and (2) it is necessary to study nervous systems at 
all levels simultaneously. From this perspective, the importance of coupling 
experimental and theoretical work in the neurosciences follows directly; without 
close interaction with experiments, theory is very likely to be sterile. (2010 [1982], 
p. 364) 

 

 One example of this mutual endeavour can be seen in neurolinguistic work that 

tries to integrate formal results from the Minimalist Program in syntax. (In adverting to 

this work I do not mean to endorse the Minimalist Program, only to illustrate how 

researchers in fields that have typically been seen as antagonistic to one another can come 

together in the interests of science.) David Poeppel (2015) remarks that the goals of 

systems neuroscience and research in syntax have aligned in the past two decades. I 

touched upon some of the relevant systems neuroscience in my discussion of canonical 

neural computations (§ 7.3). The discovery of primitive computations such as filtering, 

divisive normalization and predictive coding bodes well for the basic assumptions behind 
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the Minimalist Program. Both research programs seek to uncover fundamental and (as 

much as possible) domain-general operations underlying various cognitive phenomena. 

Merge can be seen as another such computation (§ 7.2). That part of Merge which 

combines elements is a close analogue of binding (or concatenation) operations within 

systems neuroscience (Poeppel 2015, p. 144). Given the expressions A and B, the binding 

operation produces a new expression (A, B à{A,B}). A separate procedure then labels 

the output. This work is encouraging in one important respect. Traditionally a major 

obstacle to collaboration between neuroscientists and linguists was the abstruseness and 

intractability of transformational-generative rules. Simplification of these rules at least 

makes interdisciplinary collaboration possible, and should be seen as a step in the right 

direction inasmuch as many linguists now seem to have an eye to fundamental neural 

computations. 

 

 Returning to reuse, as I suggested, the most straightforward outcome on the table 

is for the higher level ontology to incorporate the lower level one—i.e. the level of 

fundamental computations performed in modules and discrete brain regions. But what is 

the nature of these primitives? Are we talking about discrete domain-general 

computations in specific cortical sites, with a one-to-one mapping between primitives and 

brain regions (in the manner contended by Russell Poldrack)? Or are we talking more 

about dispositions, so that an individual brain region represents a particular complex of 

primitives, with a many-to-many mapping between primitives and brain regions (in the 

manner contended by Michael Anderson)? Then there is the issue of how faculty 

psychology is to proceed in light of nondecomposition and network dynamics (see 

discussion in § 5.1). Some structures (maybe many?), as we saw, are not classically 

decomposable—their properties are not additive in a bottom-up sort of fashion—even 

though functional decomposition is virtually an article of faith in cognitive science. These 

are questions to be clarified and hopefully resolved in coming years. What they provide is 

a sense of the terms that any negotiated settlement between psychology and neuroscience 

will likely take, since it is certain that faculty psychology will have to reckon with these 

primitives one way or another. 
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8.4 SUMMARY 

 

Multiple realization should not be taken as an empirical given—establishing that a kind is 

multiply realizable takes a good deal of work, as Shapiro has been at pains to show; and 

even when the existence of an MR kind can be verified, the details of its implementation 

do not suddenly become irrelevant. Structure and function are two sides of the same coin. 

Thus the multiple realization argument provides no basis for neglecting the discoveries of 

neuroscience. Faculty psychology’s strength lies precisely in its willingness to work with 

neuroscience.  
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9 
_____ 

 
Multiple realization and the  

commensurability of taxonomies: A note on grains1 
 

 

 

 

 

 

9.1 PRELIMINARY REMARKS 

 

The past two decades have witnessed a revival of interest in MR. Bechtel and Mundale’s 

(1999) illuminating discussion of the subject must no doubt be credited with having 

generated much of this renewed interest. Among other virtues, their paper expresses what 

seems to be an important insight about multiple realization: that unless we keep a 

consistent grain across realized and realizing kinds, claims alleging the multiple 

realization of psychological kinds are vulnerable to refutation. I introduced this “grains” 

argument in the previous chapter. For completeness, the present chapter elaborates upon 

what this argument gets right and what it gets wrong. The argument is certainly intuitive, 

but intuitions notwithstanding, the terms of Bechtel and Mundale’s recommendation 

make it impossible to follow, while also misleadingly insinuating that its application 

virtually guarantees mind-brain identity. Instead of a matching of grains, what multiple 

realization really requires is a principled method for adjudicating upon differences 

between tokens. Shapiro’s (2000) work on multiple realization, which I also presented in 

the previous chapter, can be understood as an attempt to adumbrate just such a method. 

Indeed I argue that Shapiro’s work represents an ideal approach to refuting claims of MR. 

While his “causal relevance” criterion can easily be mistaken for Bechtel and Mundale’s 

grain requirement, my analysis reveals exactly where and why the two tests diverge. 

																																																								
1 The material in this chapter was presented to the American Philosophy of Science Association on 3 
November 2016, in Atlanta, Georgia. I am particularly indebted to Larry Shapiro and Tom Polger for 
helpful discussion. A version of this chapter is due to appear in the journal Synthese (see Zerilli 2017b). 
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9.2 RECEPTION OF THE GRAINS ARGUMENT 

 

Recall that the grains argument alleges that MR advocates frequently employ a mismatch 

of grains when characterizing mental and neural states. Bechtel and Mundale also think 

that the MR hypothesis often gets presented in a “contextual vacuum.” The choice of 

grain is always determined by context, with “different contexts for constructing 

taxonomies” resulting in “different grain sizes for both psychology and neuroscience.” As 

they explain: 

 

One can adopt either a coarse or a fine grain, but as long as one uses a comparable 
grain on both the brain and mind side, the mapping between them will be 
correspondingly systematic. For example, one can adopt a relatively coarse grain, 
equating psychological states over different individuals or across species. If one 
employs the same grain, though, one will equate activity in brain areas across 
species, and one-to-one mapping is preserved (though perhaps further taxonomic 
refinement and/or delineation may be required). Conversely, one can adopt a very 
fine grain, and differentiate psychological states between individuals, or even in 
the same individual over time. If one similarly adopts a fine grain in analyzing the 
brain, then one is likely to map the psychological differences onto brain 
differences, and brain differences onto psychological differences. (1999, p. 202) 

 

At least among some philosophers Bechtel and Mundale’s message has evidently 

been well received (Couch 2004; Polger 2009; Godfrey-Smith, personal communication; 

see also tacit approval in Aizawa & Gillett 2009, p. 573). Polger (2009) explains the 

motivation for the grain requirement in an illuminating way. As I mentioned in the 

previous chapter, neuroplasticity has often been supposed to provide compelling evidence 

for the MR of mental states. Polger disagrees (in my view correctly). But the grains 

argument figures prominently in his reasoning. As he points out, it might be tempting to 

regard a phenomenon like cortical map plasticity—where different brain regions subserve 

the same function at different times in an individual’s history, say, after brain injury or 

trauma—as an existence proof of MR. But not if the point about grains is taken to heart. 

It all comes down to what we mean by “different brain regions” subserving “the same 

function.” As I noted earlier, recovered functions in these circumstances are frequently 

suboptimal. Genuine MR requires the same psychological state to be underwritten by 

different neurological states; but suboptimality is evidence of difference underlying 

difference, not difference underlying sameness, as MR requires: 
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It’s true that this kind of representational plasticity involves the “same” function 
being mediated by “different” cortical areas. But here one faces the challenge 
leveled by Bechtel and Mundale’s charge that defenses of [MR] employ a 
mismatch in the granularity of psychological and neuroscientific kinds. If we 
individuate psychological processes quite coarsely—by gross function, say—then 
we can say that functions or psychological states are of the same kind through 
plastic change over time. And if we individuate neuroscientific kinds quite 
finely—by precise cortical location, or particular neurons—then we can say that 
cortical map plasticity involves different neuronal kinds. But this is clearly a 
mug’s game. What we want to know is not whether there is some way or other of 
counting mental states and brain states that can be used to distinguish them—no 
doubt there are many. The question is whether the sciences of psychology and 
neuroscience give us any way of registering the two taxonomic systems. (2009, p. 
467, my emphasis) 

 

9.3 PROBLEMS WITH THE GRAINS ARGUMENT 

 

But now the question is this: what, precisely, can it mean to use a “comparable” grain, or 

to keep a grain size “constant,” across both psychological and neurophysiological 

taxonomies? Polger’s motivation makes a lot of sense, to be sure, but talk of “registering” 

taxonomies (as of aligning classificatory regimes, or rendering distinct scientific 

descriptions commensurable, or however else one might care to put it) doesn’t shed any 

light on how the desideratum for consistent grains can actually be met. Since it is 

intended to serve in part as a methodological prescription, it’s important to know what to 

make of this requirement—metaphors won’t help us here. How, in concrete terms, is an 

investigator meant to satisfy such a condition as this on their research? 

 

Let me begin by using pain and hunger as the MR kinds in question, both because 

they are states about which Bechtel and Mundale have something to say and because they 

have long been staples of the MR literature. In the previous section I mentioned that 

when Putnam went about collecting his various specimens of pain, he ignored the many 

likely subtle differences between them—even as he had few scruples about declaring 

them different at a neurological level. Bechtel and Mundale’s complaint against Putnam 

therefore seems to be that when he says that pain (or hunger) is likely to be an MR kind, 

we can only go along with him if we can be sure that, when he was comparing his 

specimens from a neurological point of view, he was careful to apply no less lenient a 

standard of differentiation than he applied when comparing his specimens from a 
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psychological point of view. But because in their view he didn’t do this, he opened 

himself to their challenge that he was unduly permissive in his classification of 

psychological states. This explains why Bechtel and Mundale chide that:  

  

A human’s psychological state and that of an octopus might well be counted as the 
same insofar as they are associated with some general feature (such as food-
seeking behavior, in the case of hunger). But with respect to other considerations, 
a human psychological state may be considered different from that of an octopus, 
even if we limit the scope to mere behavior. Food-seeking behavior for the 
octopus is different from food-seeking behavior in the human if one is concerned 
about such things as how one seeks the food, what foods are sought, under what 
conditions, etc. (1999, p. 203) 
  

This seems intuitive and sensible. In the present context, therefore, the word “grain” 

seems to mean something like, “the basis for comparison,” or more precisely, “the respect 

under which we seek to compare a set of tokens”; and “same (grain)” means something 

like “equally permissive or stringent (bases of comparison).” I think this takes us a step 

closer to what Bechtel and Mundale mean when they exhort us to employ the same grain 

across realized and realizing kinds. MR requires a comparison of a set of tokens from both 

a psychological and a neurological point of view; and we must see to it (somehow) that 

these cross-disciplinary reference points are on talking terms. So far so good. 

  

But now what does this mean? How can the bases for comparing a set of tokens (in 

the present context, two brains) be “on talking terms” or “commensurable” or 

“comparable” when the bases are delivered by two distinct disciplines (in the present 

context, psychology and neuroscience)? I’m going to illustrate what I take to be the most 

natural way in which such cross-disciplinary reference points can be brought into 

alignment by using an example where the two disciplines are more clearly distinct than 

psychology and neuroscience. In this way the nature of the problem will be brought into 

much sharper relief than if I were to stick with psychology and neuroscience. Suppose 

you have two tokens of fruit. The science of botany (say) could deliver descriptions under 

which the two are classified the same (e.g. from the point of view of species), but also 

descriptions under which they come out different (e.g. from the point of view 

of varieties). The first description could be said to apply a coarser grain than the second. 

Now imagine economics coming into the picture. The science of economics can likewise 

deliver descriptions under which both tokens are classified the same (e.g. both are forms 
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of tradable fresh produce) or different (e.g. one, being typically the crunchier and sweeter 

variety, has a lower elasticity of demand than the other). Once again, the first description 

could be said to apply a coarser grain than the second. Perhaps, then, we could take it that 

botany and economics deliver descriptions at the same grain of analysis when their 

judgments of sameness or difference cohere in a given case. In the example, botanical 

descriptions via species classification would be furnished at the same grain as economic 

descriptions via commodity classification, so that species descriptions in botany are “at 

the same grain” as commodity descriptions in economics. By the same logic, variety 

descriptions in botany would be comparable to elasticity descriptions in economics.  

  

This construal is fairly reasonable, I think, and it’s a serious, charitable attempt to 

make sense of Bechtel and Mundale’s recommendation. Still, there’s a big problem 

here. If this is all that “maintain a comparable grain” amounts to, it really does beg the 

question, for this is simply type-type identity by fiat. Of course such a recommendation 

will ensure that the mapping between psychology and neuroscience will be “systematic” 

(to use Bechtel and Mundale’s term), because on this account yielding concordant 

judgments of similarity or difference across taxonomies is simply what it means to apply 

the same grain. So this version of the grain requirement makes type-type identity a fait 

accompli, effectively obliterating all MR kinds from the natural order. 

  

It’s just as well that I don’t think this is quite what Bechtel and Mundale had in 

mind when they made their move to grains. And yet they do say: “One can adopt either a 

coarse or a fine grain, but as long as one uses a comparable grain on both the brain and 

mind side, the mapping between them will be correspondingly systematic” (note that—

it will be!). This sounds like someone with the utmost confidence in the grain 

requirement, which is of course what one would have if one thought grains could be 

legitimately matched in just this way. In the same passage they assert that, in the context 

of a researcher invoking a relatively coarse grain to equate psychological states across 

different individuals or species, “[i]f one employs the same grain…one will equate 

activity in brain areas across species, and one-to-one mapping is preserved…” (my 

emphasis). “One will equate…”? How can they be so sure? My guess is that, while they 

do have something important to tell us about MR, a beguiling metaphor has led them to 
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suppose that MR is easier to refute than it actually is. (I’ll support this contention with a 

few examples in a moment.) 

  

If not by this means, then, how else might two taxonomic descriptions be 

rendered commensurable? Perhaps when I suggested a moment ago that two sciences 

deliver descriptions at the same grain of analysis when their judgments of sameness or 

difference cohere in a given case I should have added “likely (to cohere).” We would then 

have:  

  

Any two sciences deliver descriptions at the same grain of analysis when their 
judgments of sameness or difference are likely to cohere in a given case.  
  

This would at least solve the problem of inevitability, and makes sense of Bechtel and 

Mundale’s more cautious choice of words near the same passage I cited earlier, where 

they say, in the context of a researcher invoking a fine grain to differentiate psychological 

states, “[i]f one similarly adopts a fine grain in analyzing the brain, then one is likely to 

map the psychological differences onto brain differences, and brain differences onto 

psychological differences” (1999, p. 202, my emphasis). “Is likely to” is better than 

“will.” Still, this more cautious formulation doesn’t immunize them from the serious 

errors I point out below. It appears that the distinction between likelihood and 

inevitability must be handled very carefully in this debate, as is shown by Bechtel and 

Mundale’s following remarks on computer programs: 

  

One often speaks of running the same program on different computer 
architectures, thereby generating a case of multiple realization. But in fact one has 
surreptitiously adopted a coarse grain in characterizing the program. If one looks 
carefully enough at performance measures, one will generally be able to identify 
differences in the way the program runs on different computers.” (1999, pp. 202-
203, my emphasis) 
  

How carefully need we look before we can stop looking? Until the mapping is one-to-one 

between software and hardware? What if we don’t find a one-to-one mapping, having 

already looked more carefully at the software, but could have a one-to-one mapping if 

only we look yet a little more carefully? Do we stop, or keep going? How do we know? 

The road from a likely one-to-one mapping to an inevitable one-to-one mapping is here at 

its most precarious. 
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But let’s try to remedy this if we can. Bechtel and Mundale are obviously after 

some feature of taxonomic description that can, as it were, latch onto a corresponding 

feature of another taxonomic description. Perhaps this makes most sense if we replace the 

idea of a “grain” with the idea of a “level,” and more specifically a “level of description or 

abstraction.” A software program may be described at different levels (machine language, 

assembly language, compiler language, etc.), as indeed may its underlying hardware 

(microphysical events, transistors, chips/circuits, etc.). This at once provides a much 

clearer picture of how we might go about scoring off levels from one discipline against 

another (and thereby achieve that most elusive and sought-after match between grains). 

Higher levels of software will correspond to higher levels of hardware—and it need not be 

inevitable that two programs with the same compiler language will be the same at the 

circuit level, even though the compiler language occupies (let’s say) the corresponding 

rank within the software hierarchy that the circuit level does within the hardware one. 

Translating this thought into the present context, different psychological levels must be 

understood as tallying up with different neurological levels. When the levels of 

description correspond, the descriptions are at the “same grain.” 

  

This does seem more promising, I agree, but I suspect that it is beset with more 

problems in turn. For example, can we really lay out these two sciences (psychology and 

neuroscience—indeed any two sciences!) on the Procrustean bed of “comparable levels”? 

And more worryingly, who gets to say whether a level within the hierarchy of one 

discipline really tallies with a level drawn from the hierarchy of another discipline? I fear 

that replacing “grains” talk with “levels” talk serves only to demystify temporarily. The 

problem has been merely postponed. 

 

Of course matters aren’t much helped by the reasonable suspicion that MR is the 

result of pairing inconsistent grains. For what is neuroscience if not a fine-grained 

description of psychology, and psychology if not a coarse-grained description of 

neuroscience? It is surely plausible that the neural and psychological sciences line up in 

something like this way, given that talk about the mind is really talk about the brain from 

a somewhat more abstract point of view. 
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What Bechtel and Mundale are ultimately trying to convey through their 

discussion of grains is the thought that claims of MR cannot be advanced willy-nilly—

that there is an objective and standard way to go about verifying the existence of MR 

kinds and arbitrating disputes involving them. For the reasons just canvassed, however, it 

strikes me that talk of grains doesn’t serve their purposes at all well. In fact they would 

have been nearer the mark had they said that what MR requires is some sort of principled 

mismatching of grains. 

 

So far I’ve tried to indicate in what respects Bechtel and Mundale’s grain 

requirement is imprecise and impracticable. Before I can show that the grains strategy is 

also misleading, and actually often gives the wrong answer, it will be useful to set it 

against an account which demonstrably gets things right, indeed an account which even 

its detractors concede gets something very important right (e.g. see Gillett 2003, pp. 591, 

592, 596, 597, 599, 600). Shapiro’s (2000) analysis, which we met with in the previous 

chapter, expresses with enviable lucidity what I think is the crucial insight towards which 

Bechtel and Mundale were uneasily groping. Interestingly, some philosophers—e.g. 

Polger (2009)—write as if the grain requirement and Shapiro’s own formula for MR were 

effectively interchangeable. This is a mistake: the two approaches deliver different 

judgments in nontrivial cases (as I’ll illustrate in a moment). 

 

Both Bechtel and Mundale and Shapiro would agree that the context of an inquiry 

is relevant to the question that a researcher asks (indeed this is trivially true). The crucial 

insight behind Shapiro’s analysis is that MR itself (at least partly) sets the context of the 

inquiry here, inasmuch as MR makes function the primary basis of comparison between 

tokens, i.e. the specific point of view from which we will compare a set of tokens in the 

first instance (not phenomenology, not behavioural ecology, or anything else for that 

matter). MR is after all a thesis about sameness and difference (Polger 2009); and any two 

particulars will both differ and resemble infinitely (Bechtel & Mundale 1999, p. 203). 

Whether two particulars are “the same” or “different” therefore depends on the aspect 

from which we choose to compare them. It just so happens that to ask whether a kind is 

an MR kind is already to have decided this preliminary question: what we want to know 

here is whether two tokens that serve a particular function do so in the same way. 

Explanatory considerations may of course fine-tune the sort of function that captures our 
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attention (cork-removal, rigidity, vision, camera vision, etc.). But function here is our key 

preoccupation, and having settled on a specific function which a set of tokens can be said 

to perform, the all-important question on Shapiro’s analysis is how the two tokens bring 

that function about. Each case must be judged on its own merits. 

 

Notice that to the extent Shapiro’s causal relevance criterion envisages certain 

realizing properties being “screened off” from consideration in the course of inquiry, 

there is a sense in which the taxonomies of realized and realizing kinds may be said to be 

“commensurable” or “registrable” (no doubt explaining why some philosophers have 

simply confused commensurability with causal relevance). Thus when comparing the 

cork-removing properties of two waiter’s corkscrews, compositional differences will not 

feature in the realizing taxonomy (if we accept Shapiro’s characterization of the problem). 

So we have cork-removal, which features in what we may regard as a coarse-grained 

taxonomy, realized by two objects described by a “science” of cork-removal in which 

microstructural variations do not matter, hence which might also be regarded as a coarse-

grained taxonomy. If on the other hand we were comparing the same corkscrews for 

rigidity, where one was made of steel and the other of aluminium, compositional 

differences would feature in the realizing taxonomy. Here we would have rigidity, which 

features in what we could well regard as a more fine-grained taxonomy than that 

encompassing cork-removal, realized by two objects described by a science in which 

microstructural variations really do matter (namely metallurgy), and which might also be 

regarded as a fine-grained taxonomy, at least more fine-grained than the fictitious science 

of cork-removal. But my point is this: commensurability nowhere appears as an 

independent criterion of validity in Shapiro’s account of MR, for it is an artifact of the 

causal relevance criterion, not a self-standing principle. Taxonomic commensurability is 

in fact an implicit requirement of the causal relevance criterion in the sense that it’s taken 

care of once the proper question is posed. As an explicit constraint it is a will-o’-the-wisp. 

 

Armed with this analysis, let’s examine how Bechtel and Mundale attempt to 

refute the status of hunger as an MR kind. Putnam (1967) had compared hunger across 

species as diverse as humans and octopuses to illustrate the likelihood that some 

psychological predicates are multiply realizable. On the basis of their grains critique, 

however, Bechtel and Mundale suggest that hunger will not do the work Putnam had cut 



 174 

out for it; for “at anything less than a very abstract level,” hunger is different in octopuses 

and humans (1999, p. 202). The thought is that a finer individuation of hunger refutes the 

existence of a single psychological kind, hunger, which can be said to cross-classify 

humans and octopuses. Thus they essay to challenge the cognitive uniformity which MR 

requires at the level of psychology. 

 

Perhaps we might first note that when identifying a single psychological state to 

establish the necessary conditions for MR, nothing Bechtel and Mundale say actually 

precludes the choice to go abstract. If context is what fixes the choice of grain (as they are 

surely right to point out), who’s to say that context couldn’t fix the sort of grain that 

makes hunger relevant in an abstract sense? It may be tempting to think that a more 

detailed description of something is somehow more real. But there is of course nothing 

intrinsically more or less real about a chosen schema relative to others that might have 

been chosen (there is no reason to suspect, for instance, that a determinate has any more 

reality than a determinable). This consideration applies with no less force when we decide 

to let the sciences dictate what the relevant kinds will be, since different sciences can take 

both more and less abstract objects within the ken of their inquiries (Craver 2007). In fact 

one way of reading Bechtel and Mundale’s paper (particularly §§ 2-4) is precisely as 

suggesting that kind individuation should be fixed by the sciences. This point comes 

through pretty clearly when they discuss the individuation of neural states. In that 

specific context their paper provides excellent and detailed examples of how scientific 

taxonomies can be invoked in debates over MR. The philosophical notion of a brain state, 

they complain, is a “philosopher’s fiction,” because brain scientists by and large do not 

individuate brain states on the basis of physical and chemical criteria; it is enough for 

their purposes to employ the much coarser notion of “activity in the same brain part or 

conglomerate of parts.” This is a clear demonstration of how regard for the sciences may 

frequently mean opting for less precise/more abstract descriptions of phenomena.2 

 

Notice, incidentally, that when it comes to the individuation of psychological 

states (as distinct from neural states), Bechtel and Mundale’s advice about heeding the 

sciences seems to get lost. The part of their paper where they do most to explicate a fine-

																																																								
2 Bechtel and Mundale’s test at this point can be seen as a bowdlerized version of Shapiro’s causal relevance 
criterion, which screens off causally irrelevant details when comparing realizing kinds (much as Bechtel and 
Mundale’s “coarse-graining” procedure does). 
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graining procedure for psychological kinds (1999, pp. 201-204) nowhere exemplifies how 

the cognitive sciences can be invoked to guide individuation of psychological kinds.3 

Instead they rely on “kind splitting” (Polger & Shapiro 2016), where a given (higher 

level) kind (e.g. vision, as instanced in both humans and molluscs) is described in 

increasingly greater detail until the illusion that two tokens are the same is finally 

dispelled (allegedly demonstrating, for example, that human eyes and mollusc eyes are in 

fact different psychological kinds, not instances of the same overarching psychological 

kind “eye”). But kind splitting is gratuitous if it ignores the explanatory salience of the 

higher level kind (see below), and in none of their examples (see 1999, pp. 201-204) are 

the cognitive sciences actually consulted to check for this salience. This is precisely the 

point at which the cognitive sciences would be most instructive: we need to be sure 

whether a split is justified, and thus whether a split would really undermine the integrity 

of a given higher level kind. So at least in the context of individuating psychological 

kinds, it would appear that Bechtel and Mundale have failed to heed their own advice. 

 

And yet there is a deeper problem with Bechtel and Mundale’s deployment of the 

grains strategy here. To repeat their complaint: “at anything less than a very abstract 

level,” hunger is different in octopuses and humans. But now why should this be 

relevant? Who would deny it? They themselves seem to be oblivious to the context which 

the very inquiry into MR makes paramount. They are not right to allege, as they do, that 

“the assertion that what we broadly call ‘hunger’ is the same psychological state when 

instanced in humans and octopi has apparently been widely and easily accepted without 

specifying the context for judging sameness” (1999, p. 203). The reason why hunger, 

pain, vision and so on were all taken for granted—assumed to be uniform at the cognitive 

level—is because MR made function the point of view from which tokens were to be 

compared. As Shapiro reminds us, “the things for which [the MR thesis] has a chance of 

being true” are all “defined by reference to their purpose or capacity or contribution to 

some end.” It was understood that, say in the case of pain, regardless of phenomenal, 

ecological or behavioural differences between human and octopus pain (I doubt any of 

which were lost on Putnam), all instances of pain in these creatures had something like 

detection and avoidance in common. This might be to cast pain at “a very abstract level,” 

																																																								
3 The nearest they come is this: “When comparing psychological states across different individuals, 
psychologists…tend to ignore differences and focus on commonalities” (1999, p. 202). If anything, 
however, one would have thought that this fact should actually discourage kind splitting (see text). 
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but this just happens to be the context which the inquiry into MR itself sets. A similarly 

abstract feature is what unites all instances of hunger: let’s call it nutrition-induction. It is 

not that decades of philosophers had simply forgotten to specify the point of view from 

which these psychological predicates were being considered: it is rather that they simply 

didn’t need to, since all of them had read enough of Putnam and the early functionalists 

to know what they were about. Phenomenal and other differences that one might care to 

enumerate between these predicates come a dime a dozen. But the whole point of 

functionalism was to abjure the inquiry into essences and focus instead on the causal role 

of a mental state within the life of an organism. Yes, this is to compare tokens from an 

“abstract level,” but that’s what made functionalism intriguing to begin with. And if 

Shapiro’s analysis is any guide, it is really the next step in the endeavour to verify the 

existence of an MR kind that is the crucial one. Genuine MR requires that there be 

“different ways to bring about the function that defines the kind.” So the follow-up 

question concerns how the relevant organisms achieve their detection and avoidance 

function, or nutrition-induction function, or whatever the case may be. It is in fact only 

by asking this next question that we can appreciate just how badly the grains strategy 

fares. The attempt to individuate hunger more finely would not refute the multiple 

realizability of hunger as between humans and octopuses if it could ultimately be shown 

that humans and octopuses achieve their nutrition-induction capacities in different ways 

(which seems extremely likely); for then the functional role of hunger would be played by 

two different realizers—the issue to which the MR inquiry is directed after all—

notwithstanding that the functional role can be more finely described within a more 

specific frame of reference. Similarly, the attempt to individuate pain more finely would 

not refute the multiple realizability of pain as between humans and octopuses if it could 

ultimately be shown that humans and octopuses achieve their detection and avoidance 

capacities in different ways (which again seems extremely likely). The sort of type 

reduction that cuts its teeth by fine-graining psychological categories (i.e. kind splitting) 

is almost always trivially possible, since at the limit everything is a special case; but the 

move won’t succeed in refuting the existence of an MR kind at a higher level if the higher 

level functional kind can be brought about in causally distinct ways. Of course there are 

occasions when kind splitting may be mandated by the sciences, because the higher level 

kind has no taxonomic relevance. This makes sense if kind individuation should be fixed 

by the sciences (Couch 2009a; 2009b). In such cases the split really would undermine MR 
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at the higher level. But it’s important to emphasize that these cases require careful 

consideration and may turn out to be rare in any event (see Polger & Shapiro 2016, pp. 

103, 104-105, 110-111; Couch 2009a, pp. 262-264, 267; 2009b, p. 514). 

 

So we see that the grains strategy, to the extent that it involves fine-graining 

psychological states in order to undermine the cognitive uniformity required by MR, sets 

itself a very easy job indeed, and mischaracterizes the nature of MR by its neglect of 

function. Moreover Shapiro’s causal relevance criterion—which honors the core concerns 

motivating Bechtel and Mundale’s resort to grains—does not demonstrate that hunger (or 

pain) is type-reducible. 

 

A good illustration of the grains strategy in action is provided by Couch’s (2004) 

attempt to refute the claim that the human eye and the octopus eye are distinct 

realizations of the kind eye. Conceding differences at a neurobiological level, the strategy 

again involves challenging the alleged uniformity at the cognitive level. As he explains, 

“[e]stablishing [MR] requires showing that…the physical state types in question are 

distinct [and] that the relevant functional properties are type identical. Claims about 

[MR] can be challenged at either step” (2004, p. 202). Reminding us that psychological 

states “are often only superficially similar,” and that “at a detailed level the neural 

differences make for functional differences” (2004, p. 203), he states: 

 

Psychologists sometimes talk about humans and species like octopi sharing the 
same psychological states. However, they also recognize that there are important 
differences involved depending on how finely one identifies the relevant 
features...Establishing multiple realization requires showing that the same 
psychological state has diverse realizations. But we can always disagree with the 
functional taxonomy, and claim there are psychological differences at another 
level of description. (2004, p. 203) 

 

Thus he relates that while the two types of eyes have similar structure in certain respects, 

both consisting of a spherical shell, lens and retina, they use different kinds of visual 

pigments in their photoreceptors, as well as having different numbers of them, the 

octopus having one in contrast to the human eye which has four. They also have different 

retinas. The human retina, with its rods and cones, allows the eye to focus light by 

bending the lens, thereby changing its shape. The octopus eye, with rhabdomeres instead 

of rods and cones, focuses light by moving the lens backwards and forwards within the 
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shell. All these factors show up as differences in output, not just structure. The octopus, 

having only a single pigment, is colorblind, while its receptor’s unique structure allows it 

to perceive the plane of polarized light. Retinal differences likewise make for functional 

differences, with very little information processing occurring on the octopus’s retina, 

unlike the case of the human retina. This produces differences in stimuli and reaction 

times. So the two eyes might be similar, but when described with a suitably fine grain, he 

contends, they come out type distinct. In the result they are both physically and 

cognitively diverse, and so not genuine examples of MR. 

 

Notice again that, contrary to what is claimed, it has not been demonstrated that 

type-type identity prevails here after all (on the understanding that the kind camera 

eyehuman reduces to its distinct neural type, and the kind camera eyemollusc in turn reduces 

to its distinct neural type). If anything what this foray into mollusc visual physiology 

succeeds in showing is that, relative to the kind camera eye, human camera eyes and 

octopus camera eyes count as distinct realizations(!), for, assuming Shapiro’s causal 

relevance criterion applies, human camera eyes achieve the function of camera vision 

differently to the way octopus camera eyes achieve this function. Were we to attend to the 

original inquiry, which concerned whether human eyes and octopus eyes count as distinct 

realizations of the kind eye, Shapiro’s own response, for what it’s worth, is clear (2000, 

pp. 645-646): here we do seem to confront a genuine case of type-type identity, as 

Putnam himself assumed, because, relative to the function of vision (not camera vision), 

both humans and molluscs achieve the function the same way (namely, by camera 

vision!). Differences that would be relevant at the neural level between humans and 

molluscs when asking how camera vision is achieved can be conveniently screened off 

when the question is how vision, as distinct from camera vision, is achieved. Again if pain 

or hunger were the kind in question, it seems more likely than not that we would confront 

a case of MR (unlike with vision), as we conjectured earlier. Explanatory context dictates 

the function of interest, and the function is one that we have to assume is common to the 

tokens in question in order to get the inquiry into MR off the ground. Indeed if Shapiro’s 

analysis is correct, with MR we’re always asking how some common function is achieved 

by different tokens that do that thing. Where there is no common function the question of 

MR cannot so much as arise. The fact that the question does arise in all the cases we’ve 

considered is a powerful indication that we’re dealing with functions which all the 
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relevant tokens actually share. The grains strategy confuses matters by suggesting that in 

many cases involving putative MR kinds, psychological states can be individuated using a 

finer grain of description. But if what I have been saying is right, this is not the proper 

way to refute a putative case of MR. 

 

 That mine is the correct assessment of the situation is not only attested to by 

Shapiro’s analysis of MR, but also by the fact that it avoids the very mug’s game Polger 

sought to eschew by embracing the grains strategy in the first place. If for any putative 

MR kind I am free to cavil with the choice of your size of grain (“oh, that’s far too coarse 

for psychology,” or “now that’s really not coarse enough for neuroscience”), how is the 

resulting game any less of a mug’s game than the one we were trapped in at the start? I 

myself have played a few of these games with philosophers. No one wins. Couch’s 

remarks are telling: “we can always disagree with the functional taxonomy, and claim 

there are psychological differences at another level of description.” So the game goes on.4 

Yes, it is true that Bechtel and Mundale don’t overtly admit to thinking their criterion 

eradicates MR kinds completely; and yet it would have been interesting to see them 

pointing out even a single instance of an MR kind they think rightly counts as such. But 

alas they don’t.5 All their examples come out as type-type identities after being subjected 

to their test—even where it is highly likely that Shapiro’s more precise test would lead us 

to conclude otherwise. 

 

9.4 SUMMARY 

 

There’s a real problem with the grain requirement. The central difficulty is that in the 

terms in which it’s been put it is largely unworkable, and at best no more than a loose 

metaphor. For a recommendation intended to serve at least in part as a methodological 

reform, this is clearly unsatisfactory. I don’t deny that Bechtel and Mundale were onto 

something. But whatever value their insight into MR might have has been obscured by 

their unfortunate formulation of the issue. Moreover, as I have tried to show, the 

																																																								
4 In subsequent work, Couch (2009a; 2009b) has been more careful in his remarks, and has brought out 
explicitly the importance of scientific taxonomy in the individuation of both neural and psychological kinds. 
Still I notice that in these papers he doesn’t rely on granularity arguments, and indeed is even mildly critical 
of them (2009a, p. 267). When grains hold sway, MR stands little chance of receiving a fair hearing. 

5 By contrast, Couch (2009b, p. 514) puts forward human eyes and pigeon eyes as plausible candidates for 
MR, and comments: “Accepting that this example is plausible is a revision from an earlier view of mine.” 
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formulation is unfortunate not just because it happens to be unworkable. More 

worryingly, the argument from grains distorts the truth about MR by encouraging the 

view that mind-brain identity comes for free once we invoke the “same grain” of 

description across both realized and realizing kinds. But when the insight to which this 

locution seems to point is expressed in terms that are intelligible and empirically tractable 

(namely, Shapiro’s causal relevance criterion), mind-brain identity seems anything but a 

fait accompli. Grains talk makes it tempting to think MR is easier to refute than it in fact 

is. It is certainly true, as Bechtel and Mundale acknowledge, that context fixes the choice 

of grain (where by “grain” we mean the respect under which we seek to compare a set of 

tokens); but we are not ipso facto obliged to employ a consistent grain across realized and 

realizing kinds (since this is just about meaningless as far as a researcher into these 

matters would be concerned and raises a host of difficulties beside). Rather than matching 

grains, what MR really behooves us to do is to apply a principled method for adjudicating 

upon differences between tokens of a functional kind. Shapiro’s work on MR shows us 

how to approach this important task. 
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10 
_____ 

 

Conclusion 
 

 

 

 

 

 

This thesis has been concerned with a specific feature of the organization of biological 

systems. Livers, hair, eyes, skin, hearts—each exhibits in its own way a certain richness of 

inner structure which it would be foolish to suppose stops the moment one reaches the 

brain. Happily, no one denies the brain’s intricacy of structure and function. The debate 

has always been over what form this complexity takes. The most influential answer to this 

question over the past 60 years—and the most controversial for at least the past 30—is 

that the mind is composed of modules. I took the canonical expression of this concept 

from Fodor, but isolated it from some of its peculiarities, most especially the notion of 

strict domain specificity and sensory transduction. I put this refined concept to the test 

and ended up with a mixed bag of results. Fodorian modules survive in some ways, but 

die in others. The modules that survive are functionally and anatomically exiguous when 

set against those postulated by mainstream evolutionary psychologists. They do not 

handle gross cognitive functions. In effect they are the columns which Vernon 

Mountcastle originally hypothesized some 60 years ago, and form part of the well-known 

“columnar hypothesis” in neuroscience. These modules extend throughout the cortex, so 

there can be no real sense in which central systems are not modular. This is to say that the 

cortex appears to be modular in the general sense that it exhibits a limited (and as yet 

undetermined) degree of functional specialization consistent with the reuse of neural 

resources. There seems to be no particular difference in this regard between peripheral 

systems and central systems. Low-level sensory systems appear as reliant on domain-

general mechanisms as central ones. Perceptual and linguistic systems do not exhibit the 

defining characteristics of Fodorian modularity. 
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Still, the fate of this revised notion of modularity is not certain. The main issue 

confronting modularity in this revised sense is the effect of neural network context on 

local function. At some point the effects of context are so strong that the degree of 

specialization required for modularity is not able to be met. This does not mean that such 

brain regions are infinitely plastic, prey entirely to the whims of the neural network in 

which they find themselves: their plasticity is actually impressively constrained, and they 

exhibit a considerable degree of developmental robustness. Nevertheless the extent of 

strong context effects may turn out to be great enough to put a decisive end to 

modularity’s long reign. Recent work in neurobiology is thus forcing a redefinition of the 

architecture of cognition, principally in terms of patterns of interconnectivity, partial 

specialization and emergent specialization. As Giordana Grossi summarizes recent trends: 

 

…cognitive and brain systems that are specialized in adults develop in a highly 
interconnected brain where regions co-develop with other brain regions, not in 
isolation. What a brain region or neuron does, in terms of function, depends on its 
interaction with other regions and neurons[;] it even depends on the state of 
distributed neural networks….Within this framework, the specialization of neural 
systems (modularity) assumes a different meaning, one that is anchored into the 
physical system of a developing organism…. (2014, p. 346) 
 

Turning to the language module, we saw that there probably is no such thing, not 

at any rate in the conventional sense, and that dissociations which are otherwise 

compelling evidence of domain specificity can be adequately explained by the 

Redundancy Model, which predicates functional inheritance across tasks and task 

categories even when the tasks are implemented in spatially segregated neural networks. 

 

All up, this is a brave new world. It offers a clearer, cleaner and far more realistic 

picture of how the mind works. It is respectful of advances in psychology and philosophy 

over the past half century, but is anchored firmly in the neurobiological evidence. It 

strikes what I think is an ideal balance between different approaches to the investigation 

of the mind/brain. I commend it unreservedly. 
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